machine code sprites
and graphics

for the zx spectrum

a complete guide to sprite coding

john durst

[——

First published 1984 by: :
Sunshine Books (an imprint of Scot Press Ltd.)
12-13 Little Newport Street

London WC2R 3LD

Copyright © John Durst, 1984

™), ZX, ZX Interface I, ZX Microdrive, ZX Net and ZX Spectrum are Trade

Marks of Sinclair Research Ltd.

© The contents of the Spectrum ROM and Interface 1 ROM are the copyright
j of Sinclair Research Ltd.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording and/or otherwise, without the prior written
) permission of the Publishers.

British Library Cataloguing in Publication Data
Durst, John
Machine code sprites and graphics for the ZX Spectrum.
1. Computer graphics 2. Sinclair ZX
Spectrum (Computer)
I. Title
001.64'43 T385

ISBN 0-946408-51-3

Cover design by Grad Graphic Design Ltd.
Illustration by Richard Dunn.
Typeset and printed in England by Unwin Brothers Ltd, Woking.

il

CONTENTS

Introduction

O 0 N O U B W N =

e e = S =Y
W N = O

14

Into Machine Code

The Memory

Making Bigger Characters
Even Bigger Characters
Sideways Characters
Small Characters

Printing Six-bit Characters
Sprites — Animation

The Moving Sprite

Sprite Backgrounds

The Attributes File

The Display File

Inputs and Outputs

Following a Machine Code Program —

Hex/Dec

Appendices

A:

B:

Machine Code Routines
Some ROM Subroutines

Index

Page

1X

15
27
33
41
55
65
71
83
91
103
115

125

141
147

151

il

Contents in detail

CHAPTER 1

Into Machine Code

An introduction to the book — hexadecimal v. decimal — Hex Entry
program — storing machine code — assemblers and disassemblers.

CHAPTER 2

The Memory

Memory map — discussion of the ROM — Saver program, performing
automatic saving of bytes — Save routine.

CHAPTER 3

Making Bigger Characters

How text is printed on the screen — stretching characters —
double-sized letters — tall letters and broad letters, bold and double
bold.

CHAPTER 4

Even Bigger Characters

Characters four times and eight times normal size — characters eight
times normal size, using attributes file only.

CHAPTER 5

Sideways Characters

Generating complete new character sets — turning letters on their sides,
for use with display charts, etc.

CHAPTER 6

Small Characters

Producing six-bit characters — Titivator program, to refurbish
characters when necessary — four-bit characters, getting 64 characters
to the line — printing out text or data in four-bit — XOR.

Machine Code Sprites and Graphics for ZX Spectrum

CHAPTER 7

Printing Six-bit Characters

The difficulties of printing in six-bit — organising a counter to deal with
the number of bits shifted — shifting the letters into their new positions
— saving bytes — using six-bit characters.

CHAPTER 8

Sprites — Animation

Drawing sprites — animating within a single character — storing sprites
in upper RAM — ‘running man’ demonstration.

CHAPTER 9

The Moving Sprite

Moving a sprite smoothly about the screen — the display file layout —
printing a single character to the screen — printing a character which is
laterally offset — rearranging the bytes of a sprite — printing a sprite to
the screen.

CHAPTER 10

Sprite Backgrounds

Restoring the background wiped out by the sprite — make your sprite
float free, without a ‘white’ surround — explaining the matte process —
printing sprites with background.

CHAPTER 11

The Attribute File -

The arrangement of the attributes file — ‘hiding’ items — drawing
pictures to the attributes file — storing the file — colour.

CHAPTER 12

The Display File

The make-up of a column of print positions — finding user-defined
graphic characters — scrolling the file — rearranging the file —
shrinking the screen.

vi

Machine Code Sprites and Graphics for ZX Spectrum

CHAPTER 13

Inputs and Outputs

The interrupts — output to the television screen, making an ‘icecream’
border, ‘exploding’ the screen — the Spectrum BEEP.

CHAPTER 14

Following a Machine Code Program — Hex/Dec

Following through a machine code program, to convert hex to dec, and
dec to hex.

vii

Introduction

This is a book about the Spectrum display. It explains how to print
patterns, pictures and letters in a range far more colourful and intricate
than you would ever be able to achieve through normal BASIC
programming. And you only need the standard Spectrum devices.

You will discover how to draw your own sprites, how to animate them
and how to move them about the screen — quite independently of the
background. You will learn how to make letters outside the normal
Spectrum character range — large letters (from two to eight times
normal size), small letters (fitting 40 or even 64 characters to the line)
and sideways letters. All of these can be used in your own programs to
make them more interesting — more fun.

To do all this, you have to get down to the nitty-gritty of how the
character set, the display file and the attributes file are organised. By
the end of the book — I hope! — you will be able to manipulate these as
neatly and spectacularly as a circus juggler manages his plates and
bottles. And once you understand all they do, and everything you can
do with them, you will be able to use your Spectrum in ways Sinclair
Research never dreamed of!

The techniques described here use machine code most of the time, to
get around the restrictions of BASIC. Although I have assumed that
you will know something of machine code programming, I have tried to
make the thinking behind the routines as simple and as logically
developed as possible: I hope that everyone will be able to follow the
development of each program, step by step.

Nearly all of the routines will stand alone: that is, they can be
programmed and run individually to produce a certain result. But few of
them are meant to be left at that. They are intended to be used by you
— to be adapted and incorporated in your programs, to give you new
ideas for better programs. The routines will do what you want them to
do.

I hope that this book turns out to be useful but, above all, I hope that
you enjoy it.

ix

Machine Code Sprites and Graphics for ZX Spectrum

ZX Machine Code User’s Club

To keep up to date with machine code techniques, most people reading
this book would enjoy the ZX Machine Code User’s Club. The club
holds meetings, from time to time, and publishes a magazine,
‘MicroArts’ (with pages numbered in hex!) full of good things. The
club is.non-profit-making — actually, more loss-making, at the moment.
Particulars from the Secretary, Miss Toni Baker, 37 Stratford Road,
Wolverton, Milton Keynes MK12 SLW.

Program Notes

Please be careful when entering programs that you key in the correct
characters. In particular, the number 1 and lower case 1, and commas
and full stops, can look very similar.

Page references to the Spectrum manual are to the second edition
(1983).

CHAPTER 1
Into Machine Code

Any writer has to start by making some assumptions, and my main one is
that the reader of this book will not be a complete novice at machine code
programming. You don’t think that the ‘BC register’ is a list of
2000-year-old families, or that ‘shift right logical’ has something to do
with politics.

There are many good introductory books on machine coding, which
will take you through the rules of the system and explain how to achieve
interesting results. If you are hooked (and you probably must be hooked,
to buy this book) you will already have a couple of these works, which
explain Z80 coding in terms of the Sinclair Spectrum. But, in addition, I
would say that there are at least two ‘musts’ (or near-musts) which you
will never regret having on your shelves.

The first is The Complete Spectrum ROM Disassembly (Melbourne
House) by Dr Ian Logan and Dr Frank O’Hara. The Spectrum ROM is a
treasure-house of routines which can be picked out for use in your own
programs (some will be mentioned in the course of this book). The great
beauty of them is that, since they are there, already debugged, you don’t
really have to understand how they work — you just need to know their
start addresses and what they will do. But quite often you might want to
change the rules, perhaps by entering a routine at a later point than
normal. To follow what happens in any of these routines, there is nothing
like being able to go back to basics and consulting the original listing,
which is what you can do with the Spectrum ROM Disassembly.

The other book I could not get along without is Rodnay Zaks’
Programming the Z80 (Sybex). It’s a big book, I'm afraid, and an
expensive one, but it contains everything concerned with the Spectrum’s
microprocessor: if you want to find out what happens to the parity flag
after some obscure operation (or, indeed, what the parity flag is), then
Zaks is your man.

I have done my best in this book to explain the more difficult points,
but machine code is an intricate subject and you will no doubt find that
other, more detailed, explanations will sometimes make things clearer.

Most of the routines given here have starting addresses at FOOOh — or
sometimes at F100h, or F200h. These are quite arbitrary: in fact, if, as I
suggest, the routines form part of a bigger program, you would want to

1

Machine Code Sprites and Graphics for ZX Spectrum

put them at different addresses to form a block with the rest of your
program.

The programs were worked out on the 48K Spectrum. However, nearly
all of them, except those using very large blocks of memory, will work
equally well on the 16K model but, to avoid cluttering already crowded
pages, I have not listed the alternative addresses.

If you are using a 16K Spectrum, as a general rule, where the 48K
Spectrum has addresses beginning at FOOOh at the very top of its memory,
the 16K Spectrum should have addresses beginning at 7000h. So, to fit the
routines into a 16K context, you could substitute ‘7’ wherever you find ‘F’
at the beginning of a hex address (but you would need to check through
the programs carefully, to make sure that you had not set any traps for
yourself, by doing so.

Hexadecimal v. decimal

The previous paragraph introduces another subject, which we shall need
to tackle — the great ‘hex v. decimal’ controversy. I have used hex
addresses because it seems a sensible rule to follow in machine coding,
although, when programming in BASIC, decimal notation is really the
only option available on the Spectrum. (The limited binary input is
chiefly used for creating graphics.)

Why not be consistent and use decimal throughout? The reason is that,
in machine code, decimal gives a very poor impression of the underlying
binary, which is all the processor understands.

For example, the decimal numbers 19, 27, 35 and 43 are all Z80
instructions. On the face of it, they don’t bear much of a family
resemblance, although they stand for ‘increment DE’, ‘decrement DE’,
‘increment HL’ and ‘decrement HL’. But expressed as hex numbers they
become 13, 1B, 23, 2B. You can quickly see that references to the HL
register seem to start with 2°, while those to the DE register start with
‘1’; increments of double registers end with ‘3’ and decrements end with
‘B’. You could even carry your Sherlocking further and deduce that, if the
instruction ‘Load BC...” is ‘01...°, then ‘increment BC’ should be ‘03’.
And you would be right. '

However, the Z80 is not entirely based on this idea of ‘matching’, and
other factors intervene. But hex notation brings out the fact that the Z80
instructions are not just a set of arbitrary codes — they are a logically
constructed family in which the binary on/off signals carry out a planned
structure of tasks.

All this makes it worth our while to use hex notation in setting out
machine code routines. I confess that I have never succeeded in learning
my ‘hex times tables’ properly: I always look them up, even if I think I
know them. The single-byte codes are easily found from the character set

2

Chapter 1 Into Machine Code

in the Sinclair manual, on pp.183-188, and most machine code primers
have tables from which to work out the longer numbers. If you feel that
this involves too much effort, or takes too long, the complete program
discussed in Chapter 13 is a machine code routine to convert hex into
decimal, and vice versa, which works almost instantaneously.

I should point out here that all references to the Spectrum manual will
be to the second edition of the manual, which was produced in 1983.

Hex Entry

Understanding the principles of machine coding is not the same thing as
using it: you need more than this if you are going to construct practical
programs. Apart from notebook, pen, pocket calculator and reference
books, you need some method of entering the machine code on the
Spectrum.

All introductory books on machine coding list some method of setting
up code in the RAM. They vary in complexity, but all do an efficient job
of transforming your jabs at the keyboard into bytes stored in the
Spectrum memory. However, I've included another system here.

Machine Code Sprites and Graphics for ZX Spectrum

BRI

11e

1ED

138 #*
Fal

1d@ LET but =PEER

1Z5@ FPRIMT i TAB
L FR mhiadzl) P

ViFM cHibutd
LE@ HMESET

This program asks you to set up a string in line 40(a$) which contains the
standard hex listing for your routine (using the digits 0 to 9, and the letters
A toF). Lines 50-70 check that the string holds valid notation, after which
line 110 asks for a start address in decimal. When that is entered, the
program POKEs the required values to the chosen addresses.

The second part of the program, from line 100, allows you to display the
hex values of a series of bytes, starting from a chosen address. It also
displays the address of each byte in decimal and hex.

While this is not a proper disassembly, it allows a quick check of an
entered program —or of any other region of the memory. It can, of course,
be made to LPRINT, if required.

The main advantage of this particular Hex Entry program lies in the fact
that the listing is always preserved in ‘a$’. This makes it possible to edit the
coding — to change it, debug it, etc. (Most hex loaders involve typing in
code which isimmediately POKEd into memory, leaving you with nothing
you can see.)

Also, the first thing you learn about machine coding is that the tiniest
error seems to end in total disaster, general paralysis of the computer, etc.,
etc. If youare wise, you always SAVE your program, before running it. By
having the routine in a string, it can be SAVEd along with the BASIC
program, without having to do an extra SAVE and then LOAD bytes, asis
the case with programs which load the code straight into the memory.

Storing machine code
It’s a nice point to decide whereabouts in the RAM to store machine code.
The upper RAM is the location favoured by Sinclair Research (see the
manual, p.168) and the ‘CLEAR xxxxxx’ command has been included in
the Spectrum layout partly to provide safe space in which to hold the code
while a program is being RUN.

As I've said, most of the routines in the present book have been placed
at, or about, FOOOh — sometimes EOOOh — and, although the decimal

4

Chapter 1 Into Machine Code

equivalents are not very memorable, ‘61440’ and ‘57344’ soon get etched
on to your brain. To provide safe areas for these two starting points, you
have to CLEAR one digit less — that is, ‘CLEAR 61399’ and ‘CLEAR
57343,

Another useful location for the machine code is in a REM statement in
line 1 of a BASIC program. A BASIC program on the Spectrum does not
have a fixed location, but, in practice, the unexpanded Spectrum always
has the first character of a line 1 REM statement at 23762. However, if
you have an Interface 1 connected, beware! You will have to find the
address you need indirectly, using the system variable, PROG, as
outlined in Chapter 6.

The REM statement provides a useful place for a shortish routine,
closely linked to a BASIC program, as in the case of the Titivator
program in Chapter 6, which uses a machine code routine to produce
oversize letters. A program at this location loads automatically and is out
of the way of any other pieces of machine code which you may have in
action (as might be the case when using Titivator).

The technique used is to prepare a REM line with the required number
of ‘spaces’ and then POKE the code bytes into it (Figure 1.1).

1 REM 111113311311311111313113333%
1311111111 22222222222222222222882
ZE2222222333333333333I3I33ITIIZIIET
FOBIISTIZT44444ddddddddddddddddsd s

Figure 1.1: Line 1 REM Statement

It’s handy to use numbers for the spaces, because then you can calculate
the total easily, since each line contains 32 ‘spaces’.

Quite often, the fully POKEd REM won’t LIST properly, but this
doesn’t make any difference to the way in which the program works.

If you use the BASIC Hex Entry program to prepare your line 1 REM,
you can scrap the entry program once the REM is ready and then
MERGE the line 1 with your final BASIC application program for
subsequent use.

Assemblers and disassemblers

The trouble with simple hex loaders is that they don’t provide any method
of viewing the machine code program, other than as a raw hex listing. The
best you can hope for is

3A 08 5C D6 20 18 06

rather than

Machine Code Sprites and Graphics for ZX Spectrum

FOO0 3A 08 5C LD A,(5C08)

F003 D6 20 SUB 20
FO005 18 06 JR, FOOC
let alone

F000 3A 08 5C LD,A (LAST K)
F003 D6 20 SUB 20 ;GET KEY VALUE
F005 18 06 JR, PRINT

Obviously, the more detailed the final printout becomes, the more
complicated the program to produce it must be. To get a proper mnemonic
display, you really need to buy a professionally-prepared program, on
cassette.

These cassette-based programs come in two basic kinds, the ‘assemb-
lers’ and the ‘disassemblers’, and, as usual, there is a trade-off between the
two when it comes to using them. The assemblers let you key in the Z80
mnemonics direct, from which they will put together the machine code
listing— the ‘object code’. With a disassembler, you usually have to key in
the object code, but you have excellent facilities for display and editing.

The disadvantage of an assembler lie mostly in the fact that it has to be a
very complicated program and may not be very user-friendly. It can be as
fiddly to key in the source code and to get all the commas, spaces, labels,
etc., right, as it is to look up the object code and enter that in a
disassembler. You often have to spend quite a long time debugging the
source code in the assembler, before you can check whether the program
itself will run! On the other hand, assemblers will usually cope with labels,
calculate relative jumps and do many similar chores. But a good
disassembler will let you debug much more thoroughly, providing
BREAK points, facilities for juggling blocks of code, and so on.

There are some super-programs, which combine the virtues of both, but
they nearly always need an 80-column printer, and so are more for the
software professional than for us poor mortals.

My personal preference is for the disassembler type of program — I like
tofeel close to the object code. ButIfreely admit that thisis a personal bias,
and the Z80 will probably be one of the last microprocessors on which it will
be practical. The next generation of 16-bit processors, like the 68008 in the
Sinclair QL, will be just about impossible to handle, except through an
assembler.

CHAPTER 2
The Memory

A computer works by moving electrical charges about within the
microprocessor chip and the memory chips. There are two sorts of
memory ‘ROM’, or read only memory, and ‘RAM’, or random access
memory: (called ‘random access memory’ because you can access any
memory location you wish within it).

Conventionally, as a working analogy, each is pictured as a long line of
numbered boxes, each containing an 8-bit byte.

In the Spectrum, the line begins at 0000h and ends at FFFFh (or 7FFFh,
if we are dealing with the 16K Spectrum). Notice, by the way, how
computers like to begin their counting at ‘0’, rather than at ‘1’ like us
mortals. It is, in fact, more logical and it is not a bad habit to adopt when
writing programs: then there should be no confusion.

When dealing with machine code, it is essential to be able to find your
way about the various sections of the ROM and RAM and a map, or plan,
of the layout comes in very handy.

The memory map in Figure 2.1 is not complete. Other versions will be
found in the Sinclair manual and in most machine code books on the
Spectrum. The present version has been tailored to suit our particular
needs and it does leave out details which are not relevant here.

Much of it will probably be familiar, but it may still be a help to take a
quick canter down ‘memory lane’.

The memory map

Starting at the bottom, the section of memory from 0000h to 3FFFh is the
ROM. This is the powerhouse of the Spectrum and is unchangeable,
although its contents can be studied. It is used in most programs, both
BASIC (in which it is invariably used) and machine code, when it can be
used if it is helpful. Whole books are written about the ROM and we shall
look at some parts of it later on.

Beyond the ROM, memory is more unstable. It can be filled with
information by the computer operator, or from a cassette or Microdrive,
but it always reverts to a blank when the power is switched off — as many
of us know only too well.

Machine Code Sprites and Graphics for ZX Spectrum

END

FFFF -
(normally UDG—) FF58 User graphics
(normally RAMTOP—) FF57-” [_GOSUB & machine stacks
m
SEKEND Calculator stack
STKBOT —
Editing area
& workspace
Variables
VARS —p—
BASIC
program
(5CB6 on unexpanded PROG o
SPECTRUM) Channel information
& Microdrive maps
aCHe System variables
0 Printer buffer
SB0O -
Attributes
file
5800
Display
file
4000
Character
set
3D00
386D
Calculator
2C88
Operating system
& interpreter
0000

Figure 2.1:

Spectrum Memory Map

~——— ROM ————> <=—— FIXED RAM—— =— FLOATING RAM ———==-——— SPARE —-—-’46})—-

Chapter2 The Memory

The first section immediately above the ROM, is called the ‘fixed
RAM’. This contains divisions exploited by the ROM, at fixed addresses:
a whopping great chunk to hold the display file and colour attributes for
the television; a small section where material is assembled for the printer;
and the very important section which holds all the addresses used by the
ROM (or by us) when operating the Spectrum — the system variables.

Beyond this point, the RAM becomes even more vague, the ‘floating
RAM’. The sections have no predetermined length, though their
addresses are always computed in the ROM and then held in the system
variables.

There are sections dealing with channel information and the Micro-
drive. Beyond them comes any BASIC program we have written, with the
variables used in that program. Finally come the locations which the
Spectrum uses for dealing with a BASIC program — the workspace,
editing area and calculator stack.

Beyond all this is spare space. It may be large or small, depending on
how much there is in the BASIC program and its variables. Whatever
spare space there is can be filled with other data or machine code. This is
the area of RAM which we shall be using most frequently in order to write
and execute our machine code routines.

Rounding off the RAM comes the section I have called the ‘top end’.
This is usually approached from the top downwards. First there is a part
designed to hold user-designed graphics. It is normally the address
pointed to by the system variable UDG, but you can always change UDG
and make it point somewhere else (which can be very useful). Below the
UDG comes an address called ‘RAMTOP’, with some more ‘stacks’
(storage spaces for numbers) below it. Any RUN, CLEAR, or NEW
operation will normally clear the RAM only as far as RAMTOP (only a
complete power-off will clear beyond this point) so, by moving
RAMTOP down, you can reserve a patch of memory which is safe from
being overwritten by a BASIC operation (see Sinclair manual p.168).

The ROM

The most interesting section of memory is undoubtedly the ROM.
Everything the Spectrum does when writing or executing a BASIC
program is done through the ROM. It has a program for everything —
evenifitis just ‘Sorry, can’t cope...”. In a very real sense, the ROM is the
Spectrum.

All of these programs are written in Z80 machine code and within the
main programs there are scores of self-contained subroutines, which get
used as needed to carry out specific tasks. These are the goodies we are
after, because they can do these same tasks for us and save us a great deal
of trouble. We can poach them, like apples from an orchard!

Machine Code Sprites and Graphics for ZX Spectrum

The ones which will be of interest in the programs to be developed in
this book are listed in Appendix B, but there are many more. Now you
should be able to see the advantage of having to hand a good, annotated
disassembly of the Spectrum ROM, making it possible to locate the
section you are interested in and work through the listing to see if it can be
used as a subroutine in your own programs. Much of the listing is pretty
heavy-going, but you can struggle along, trying out bits here and there.
At the very least, it is more fun than the average adventure game.

To illustrate how ROM routines can be used in ways which are not
exactly those originally intended, here is a short program which performs
an automatic SA VE of bytes. This can be very useful if you have a BASIC
program which always goes hand-in-hand with a block of data. The data
could be a SCREENS or a machine code routine — anything, as long as
it is SAVEd as bytes.

This program compiles a label from material within the BASIC
program — ie this program can calculate a new label, like a date or an
index number, every time it is SAVEd (which can be useful too).

Saver

Because this is a demonstration program, it shows ‘W$’ (label), ‘st’ (start
address) and “fi’ (finish address) as INPUTS, but you would normally
expect these to be provided, or calculated, within your main program.

10

Chapter2 The Memory

Everyone must have noticed, when LOADing a program to the
Spectrum, that there is a kind of ‘mini-program’ which gets LOADed
ahead of the main program. This mini-program is known as the ‘header’
and, as well as the program label, which it prints out, the header contains
important information about the main program, which enables the
Spectrum to LOAD this properly.

So, before we can look at how the Saver program functions, we need to
be clear as to how the header is put together. It consists of 17 bytes,
arranged like this:

0‘12345678910‘1112|1314|1516

3 LABEL | le |st O‘O

Byte 0 codes for the type of data being SAVEd: ‘0’ for a BASIC
program, ‘1’ and 2’ for arrays (numerical or character), ‘3’ for a block of
bytes. The next 10 bytes hold the program label, normally entered by
hand, but here to be found in ‘w$’. The header ends with three pairs of
bytes, the first pair holding the length of the block to be saved (our
variable, ‘le’) the next the start address of the block (our variable, ‘st’)
and a final pair which, in the case of a code block, as above, are both zero.

All this material is assembled in the first part of z$, in line 60, which is
POKEd into the start of the printer buffer at SB0Oh by line 70. The printer
buffer has been chosen because it is not in use at this point, and its use
avoids having to pollute another piece of RAM which might be required
for something else.

The second part of line 60, POKEd into the addresses from 5SB11h
(23313d) onwards, consists of some machine code instructions. Here is
what they look like when they have been put into the printer buffer:

Saver Code
SR D6 L HL L BRSE
EiEEM HL
A F@ L. Hi. FaGa
BLyEH HL
=1 @i SB LD I# SR
od g = @aE g

As you can see, they consist of three addresses, two of them PUSHed on
to the stack and one loaded into IX, followed by a jump to a ROM
routine. To find out what they are doing, we need to look at the ROM
SAVE routine.

11

Machine Code Sprites and Graphics for ZX Spectrum

Start of SA-CONTRL Routine

OPEN LOWER SCREEN

PRINT LABEL: “start tape...” etc.

WAIT FOR KEY

DE CONTAINS LENGTH OF
HEADER (= 17d)

MAIN SAVE ROUTINE
(FOR HEADER)

PAUSE 1 SEC.

} DE CONTAINS “le”

MAIN SAVE ROUTINE (FOR
BYTES)

We don’t need to go into details, but the outline of the routine should be
clear from the notes. Before the routine starts, HL must hold the start
address of the block to be SAVEd and IX must hold the address of the
header information. The routine begins by PUSHing HL and then printing
out the ‘Start tape...” message in lower screen, before waiting for a key to
be depressed. Once this happens, the routine stacks IX and loads DE with
the fixed header length (17d = 11h). Then it CALLs the main
‘SA_BYTES’ subroutine at 04C2h. This subroutine will SAVE the
number of bytes in the DE register, starting at IX.

Once this has been done, there is a pause. The routine then loads DE
with the datablock length, using the IX register to pick out the information
from the header (IX points to the start of the header). It then POPs to IX
the last address from the stack, which was PUSHed from HL, the start
address of the block to be SAVEd. IX now holds that start address and the
routine is ready to SAVE the block, by jumping to 04C2h again.

Let’slook at our three addresses in the printer buffer again. The first one
ontothe stack will be the last one off and will form the return address for the
dangling RET at the end of the second ‘SA__ BYTES’ call. (This, you will

12

Chapter 2 The Memory

remember, was JUMPed into at address 099Eh.) This return address, in
fact, just contains another RET — actually, the first to appear in the
ROM. This has been borrowed to get us back into BASIC when the
whole operation has been completed.

Next on the stack is the start address for the data block (calculated in
our BASIC program by FNa(x) and FNb(x). The third is the printer
buffer start address, made ready in IX.

If you check 0984h, the ROM address we jump to in the orlglnal ROM
SAVE routine, you will see that our routine has skipped over all the “Wait
for a key...” information. However, all the necessary addresses are
already prepared on the stack and in IX, so that the rest of the ROM
routine can go ahead as planned.

To end with, here is the listing as it might appear in a program. You
SAVE by ‘GOTO 1100’ — this will SAVE the program, followed by the
CODE bytes. When you come to LOAD, it will LOAD the program and
start executing it from line 1000, which immediately LOADs the bytes.

You will have to arrange to CLEAR ‘bytes — 1’ beforehand.

Saver — example

CUCODE
1@
ki “qmwsthing“ LIME 1@9@
T4 '!"EMLI
A% %) =CHRS TMT (v 2SE
B ix =CHRE (X -2SE+C00E FH o as

54555: LET Le
Bg G4+ t$l4»:+F% HH L
am izt +CHRS Q+oHRg w+FH“$
a4+ THRE SlHRS : S+ FR OB
LR AFR o adhist) +THRG = &
+OHR G @+CHRES 2l +OHRE 125 +0HRSH

This is just one example of the way in which you can bend the ROM for
special purposes. I confess that it takes some courage to tackle anything

13

Machine Code Sprites and Graphics for ZX Spectrum
much more complicated. It can be difficult to trace the programming,

even with the help of a printed disassembly of the ROM, and sometimes
trial and error can be both error and trial.

14

CHAPTER 3
Making Bigger Characters

Printing text

The Sinclair Spectrum uses one of the more attractive and readable fonts
of computer type. It uses a matrix of 8 X 8 bits to produce the letters,
which are stored as eight bytes per letter in the ROM character set at
3D00-3FFFh.

This is quite a lavish use of bits to print characters. Many commercial
matrix printers use only 5 X 7, but this means that they have to use some
special means to move the print position along, so as to give a space
between letters. In addition, the lower case letters cannot have true
‘descenders’.

Descenders are the tails of letters such as ‘p’, ‘q’ and ‘y’, which
normally hang down below the print line. On a 5 X 7 matrix it is hard to do
this, so the manufacturers ‘cheat’, as in Figure 3.1. The result is
awkward-looking and makes for poor legibility.

To 3et 3 fuller rePly we need

rest of the original zentence

insertin? a spaced, It iz not
Figure 3.1

On the Spectrum, there are proper descenders and the eight-bit width
means that characters can be printed side by side, while still leaving
proper spaces between letters. You can see in Figure 3.2, where a line
has been ruled through the bottom bits of the characters, that the tails of

GH JHPXGHYX

Fehomkx Lxtx

= :i ;‘E};g}i:'ﬁ“
Figure 3.2

15

Machine Code Sprites and Graphics for ZX Spectrum

q, Y, p, q and j actually cut into the bottom line. The ‘ascenders’ of the
letters, t, h, f, k and I just graze the top line.

Before we start seeing how we can play around with the Spectrum
character set, perhaps it would be as well to take a quick look at how
printing is actually done in the Spectrum.

The key to nearly all Spectrum printing is the ‘Restart 10 instruction,
in the Z80 codes. This single opcode, ‘D7’, is used to lead into the main
ROM PRINT routine. This routine controls all the Spectrum printing
operations, including the setting of colour and other attributes, print
position, and so on (see Appendix B).

(The printing of numbers is another matter. This involves placing the
value of the number on the calculator stack, in five-byte floating point
form, from which it can be picked and printed with decimal point, or in
‘exponent’ notation. This is done by a ROM routine starting at 2DE3h.
However, for our present purposes, the ‘RST 10’ routine is the one to
stick with.)

In order to use this instruction, you first have to choose what kind of
printing is to be done. Usually, when dealing with a USR operation, the
Spectrum will be in INPUT mode and will print to the bottom of the
screen. To get the Spectrum to print to the main screen, you must open
channel ‘S’, by using the instructions ‘LD A,02: CALL 1601’ (1601h is
the address of the ‘open channel’ routine).

So, to print the letter ‘A’ on the screen, you need the routine:

Print A’/

If you change the ‘02’ at FOO1h to ‘03, the ‘A’ will be sent to the printer,
instead of to the screen. If you change it to ‘01°, the ‘A’ will go to the
INPUT area — but you may not always see it, as the area is usually
cleared as soon as the operation is completed. (You can keep the ‘A’ on
the screen by using the BASIC commands ‘RANDOMIZE USR 61440:
PAUSE(0.)

To print the ‘A’ in a specified position, in specified colours, we have to
incorporate the appropriate control codes, found on p.183 of the
Spectrum manual. To print a green ‘A’ on a yellow ground, at line 10,
column 16d, we could do the following:

16

Chapter 3 Making Bigger Characters

Print String v

AT
10d
16d

INK

PAPER

CHRS$ ‘A’

This is all very well, once in a way, but it’s very long-winded and we
wouldn’t want to use this system to print up a lot of instructions or text in a
program.

Fortunately, Sinclair Research have incorporated a string printing
subroutine in the ROM, at 203Ch, which gets over most of the
difficulties. You need to have the address of the string in DE and its
length in BC, before calling 203Ch. The subroutine is essentially a way
of looping through the string, using ‘RST 10’ to print each character in
turn.

Our green ‘A’ now becomes:

Machine Code Sprites and Graphics for ZX Spectrum

grouped together at address FOOOh. (I have left out the channel selection
routine to avoid clutter, but you would still have to incorporate it each
time you needed to redirect the printing to the main screen.)

This coding is much more compact, but it can be taken one stage
further when there are a lot of messages to be printed in a machine code
pregram.

The first step is to add the length of the string to the front of the data, so
that the DEFB (DEFine Bytes) become:

g @ 18 18 24 11

o
m

This number can be picked out by the new routine and loaded into BC at
the start of the operations.

D FIRST BYTE OF DATA INTO BC

POINT TO STRING

Once the string has been printed, you can call 203Ch again, this time to
print another string, which restores any colour, or other attributes, to
their normal condition, so that the current attributes won’t hold over into
the next bout of printing, which may require something quite different.
This is the final section, to carry out the ‘housekeeping’:

1. LENGTH OF ‘RESTORING’ STRING
: ADDRESS OF ‘REST.” STRING

You can, of course, select what you want for your ‘normal’ attributes
when you restore them at the end.

Now when you call the subroutine you will only have to specify the
address: the subroutine will read off its own LENS$, for the control loop.
You can group all the messages together in a block.

18

Chapter 3 Making Bigger Characters

Notice, by the way, that you have to respecify the whole of BC, at
FO012h, as it gets corrupted by the 203Ch routine.

Stretching characters

Now, nice as all this is, it doesn’t do very much. No sooner have new
Spectrum owners run the ‘Horizons’ tape, than they wonder how they can
get their Spectrum to print all shapes and sizes, like the tape.

In fact, the Psion machine code routine for stretching letters is a very
good one and, as it is part of the Spectrum package, it is well worth pulling
out of the cassette. It’s not hard to write a little BASIC program to go with
the routine to implement the magnified printing as required. However,
the Psion routine is quite long and complicated and suffers from being, if
anything, a bit too good. The choices are sometimes too many and too
complicated.

For practical purposes, within the framework of an actual program, I
find that the most useful enlarged character is one twice the linear size,
which looks nice and bold, but is still small enough to display a good line
of print (16 characters). But there are many useful variations. Let’s see
how these can be implemented.

Double-sized

Letters

To produce double-sized letters like the ones above, we have to make a
block of four bits grow, where only one bit grew before. This means that,
to make space for the big character, we shall have to spread it over four
normal-sized characters, printed in a block. Figure 3.3 shows what it will
look like. In the inverse printing, you can see particularly well how the big

B &6

E > A C

MNorma b
L B D
= =
=3 == Inverse
L E]

Figure 3.3: Large Graphics Character Made up of Four Normal-sized
Characters

19

Machine Code Sprites and Graphics for ZX Spectrum

character is made up of four ‘graphics’ characters. This is in fact how the
routine works. For every big character we print, we manufacture a set of
four new graphics characters in UDG positions ‘A’, ‘C’, ‘B’ and ‘D’, and
then print them out, as shown. (To save time, I'll be referring to the UDG
positions by the names of the letters normally found there.)

In order to manufacture these graphic characters, we need a machine
code routine. In principle it works quite simply.

First, we select the letter we want and look it up in the character set.
Every character in the Spectrum character set is made up of eight bytes,
each coding for a line of pixels on the screen. A set bit corresponds to a
‘black’ pixel: a zero bit corresponds to a ‘white’ pixel. For our purposes,
we deal with the character four bytes at a time — the top half of the
character first and then the bottom half.

First of all, we put the first byte of the chosen character into the A
register. This is, in fact, the top line of the character. Unfortunately, the
top line of the character consists only of zeros, so we will set up an
arbitrary line (Figure 3.4) which shows the movements more clearly.
(Actually, it is the second line, shifted two bits to the right.) We then
PUSH bit 0 into the carry bit, by doing ‘RRA’ (rotate right A).

7543216
ndefei] 4 101 7 BT register
RRFS x> >
TES43218
PRDOREEEY (Carry)
Figure 3.4

We choose the DE register pair to hold the two new bytes, which we are
going to generate from the single byte in A and we shift the carry bit into
the “7’ position in the D register, with an ‘RR D’ (Figure 3.5). This
action, of course, tips bit 0 of D back into the carry, so we pick that up
again and get it into E, by doing ‘RR E’.

TES43218
ZRAIVABE D register

FR D o»x2

TES43216
Reaoogo > B (Carry)

] E »»>»¥»

7654321@
> PRPEOEVE > @B (Carrw)

Figure 3.5

20

Chapter 3 Making Bigger Characters

As the new character is going to be twice as thick as the old one, we
need to double up on the new bit which we have taken from A. This can
be done by using ‘SRA D’. ‘Shift right arithmetic’ shifts all the bits along
one place, but it also copies into the vacant position at 7 the value of the
bit previously held there — which is exactly what we want. To complete
the operation, we pick up the previous bit 0, which has dropped into the
carry, by doing ‘RR E’ again (Figure 3.6).

76543218
fleooceeae "D" register
SRA D 33>
PEEL3I21E
coceee » B (Carry)
RR E »>x32

7884321@]
B > ceeeeead > @ (Carry)

Figure 3.6

You can see that, after doing this eight times, we shall have copied all
the bits from A as double bits into D and E. All that remains now is to
copy D and E intothe appropriate bytes of UDG ‘A’ and ‘C’.

Since our new:characters will be twice as deep, as well as being twice as
thick, we copy D and E for a second time, into the next two bytes of UDG
‘A’ and ‘C’: these will form the second line of the character on the screen
(Figure 3.7).

Originat A"

Figure 3.7

After four of these operations, we shall have finished the top half of the
original character and will have filled all the bytes of UDG ‘A’ and ‘C’.
But, by continuing with the program, we transfer operations to UDG ‘B’
and ‘D’ and fill them with the bottom half of the original character, using
the same technique.

Here is the completed listing. The operations between FOOOh and
FOOFh are concerned with getting the character INPUT at the keyboard
from the system variable LAST K, and working out the address in the
character set for this character in HL. The rest of the routine generates
the four new graphic characters. Notice that, when finding the address for

21

Machine Code Sprites and Graphics for ZX Spectrum
the UDG characters, we do it indirectly, through the system variable
UDG at 5C7Bh. This allows you to select a different address, if you want

to.

Double-sized Letters /

-

CLEAR HL
LAST_K

GET VALUE OF CHR CODE
INTO HL

MULTIPLY BY 8

START OF CHR SET
ADDRESS OF CHR

ADDRESS OF UDG

Here are two short BASIC programs, which make use of the double-sized
letters routine. One allows you to type in the letters, as on a typewriter.
The second prints out a string in the double-sized letters.

Notice that both programs get the required letter into LAST K;
program 1 from the keyboard and program 2 by POKEing the system
variable directly. LAST K is a very good access point for printing
techniques which need an interface between a BASIC program and

22

Chapter 3 Making Bigger Characters

machine code. It is one of the easiest ways of picking up a character even
though it might seem a little indirect.

Type Double-sized Letters

T

{

4
|

Using the bones of these techniques, it’s simple to devise routines which
will generate tall or fat characters — characters which are twice as high,
‘but of normal width, or twice as wide, but of normal height. It is a matter
of omitting the unwanted half of the routine — either the ‘double shuffle’
through D and E, or the double loading of D and E into the graphics
characters.

The main differences in these next two programs from the double-size
routines come in the loop arrangements, as it is these which control the
way in which the bits are presented for the new graphics. All three have
identical opening sections to find the address of the wanted characters in
the character set. I have addressed the character set indirectly, as well as
the UDG, in case you want to use a character set of your own, at an
address different from the Sinclair character set.

In the tall letters routine, we don’t have to do any bit-shifting. We
simply load each bit twice into side-by-side locations in the UDG,
addressed by IX. When one UDG has been filled, the routine moves
automatically on to the next one.

23

Machine Code Sprites and Graphics for ZX Spectrum

Tall Letters

To generate the broad letters, we do the shift (as in the double-sized
letters), but not the doubling up.

TFatties

Chapter 3 Making Bigger Characters

As a final addition to these routines which use shifts and rotations, here is
a program to let you print in ‘bold’ letters. Bold type, among printers, is
the name for letters which have thicker strokes than normal, so that they
stand out strongly from the page. In this program, we get the same effect
by rotating each byte of the letter and then ORing it with the original byte
(see Chapter 6, Four-bit Characters Entry program). This has the effect
of doubling any bits which are set, smudging, as it were, each line of the
letter. As a change of pace, I have given the BASIC program in an
LPRINT version.)

gold Printing

25

Machine Code Sprites and Graphics for ZX Spectrum

The bold version of each letter is loaded, once again, into the
long-suffering UDG “A’.
And, of course, there are still further variations. ..

This is & lime of DOUELE BOLD:®

The routine can also be adapted very simply to ‘embolden’ the entire
screen. The reason you might want to do this is to fill in ‘pinholes’.
Sometimes you put together a graphics routine which is supposed to fill in
a solid figure — by generating a series of curves, for example, each offset
from the last by one pixel. All too often these curves don’t quite overlap
everywhere, leaving the pinholes. The smudging routine will usually fill
them in. Here it is:

BOLD Screen

26

CHAPTER 4
Even Bigger Characters

To print the next size of letters (X 4, rather than x 2) calls for a rather
different technique.

We could simply extend the rotating system, so as to produce four
graphic characters per line rather than two. However, Sinclair have
conveniently provided a complete set of 4 pixel by 4 pixel graphics. The
only problem is to access the ones we want for each piece of our big
character. And here, again, the way in which the Sinclair graphics are set
out makes this exceptionally easy, as I'll explain.

Figure 4.1 shows the letter ‘B’ printed up with a grid, which breaks it up
into the constituent Sinclair graphics.

L=Cs

Figure 4.1

If you look at p.186 of the Sinclair manual, you will find that the
graphics are spread between 128 and 143, which correspond to the hex
notations ‘80 + 0’ and ‘80 + F’. Now, if you number the four quarters of
each character as in Figure 4.2 you will find that the ‘+’ number for each
graphic character is always the sum of the numbers of the ‘black’ squares.

2 1
8 4
Figure 4.2

For example, the graphic character Fd (corresponding to the top

27

Machine Code Sprites and Graphics for ZX Spectrum

lefthand corner of the big letter ‘B’ above) has the code 132, which is the
same as 80h + 4, and ‘4’ is the number in the righthand bottom corner of
our numbered square. Similarly, the next along in the big ‘B’ has code
140, which is 80 + C, where ‘C’ is 12, the sum of the bottom two
numbers.

It’s extremely easy to calculate these numbers for each graphic
character (it was, of course, designed to be!). For example, if you peel off
bits 7 and 8 of the first byte of CHR ‘B’, you get ‘0 (. Doing the same for
the second byte yields ‘0 1°. Put them together in the order in which they
are peeled off (right to left and bottom to top) and they wind up as
‘0 1 0 0” which (surprise, surprise!) has the value ‘4’.

Now we can put together a machine code routine to do this
automatically for each block of four bits. .

The trick is to get pairs of bytes from the character set into D and E, and
then, with a couple of rotate operations, first for E and then for D, slide
the four required bits, in the right order, into A. All we then have to do is
to set bit 7 of A (which gives the ‘80+x’ value, which applies to the
grahics) — and print it.

The full routine is given below. Once again the instructions from FO00Oh
to FO11h are concerned with getting the right address into HL.

The section from FO02Ch to FO3Bh takes care of moving the print
position down one line and four columns to the left, so that the next group
of four graphic characters is printed under the last. As we haven’t done
this before, I'll describe how it operates: it is a useful routine to have in
hand. You will still, however, have to get your BASIC program to
reassign the print position for each letter.

Chapter 4 Even Bigger Characters

S POSN
NEXT LINE

BACK 4 COLS

SETS PR__pPOS

To change the print position, you first have to find the existing position.
The current column and line print positions are held in the system
variable S POSN. This holds the numbers we normally use when we
print ‘AT y,x’, in the form 33—x and 24—y (where x = column and y =
line). But, to change the print position, it is not enough simply to alter
these two numbers — the system variable DF__CC has to be changed in
step. This last holds the address in the display file of the first byte of the
character— and, as we shall find to our cost, this is not the easiest number
to calculate.

However, once we have the new values for S POSN — which are

29

m

Machine Code Sprites and Graphics for ZX Spectrum

quite easy to calculate — if we put them into BC and CALL the ROM
routine at 0DDOh, this routine will calculate DF__CC and load all the
system variables, as required.

This can be very useful when planning machine code printing
operations. Remember, it’s (24 — line) into B; (33 — column) into C and
then CALL 0DD%h. Most of the registers are altered by this operation, so
be sure to PUSH and POP any that you want to keep.

The last of the ‘big characters’ I want to deal with increases the linear
dimensions eight times. This uses a complete character square for every
pixel of the original, which makes a big, bold character, but one you can
only use sparingly — you can only get four into a line, after all.

This character is one of the easiest to generate, as we only have to run
through the bytes for the character in order and arrange to print a black
square, when a set bit is found, and a white square otherwise.

It is neater to use the ‘graphic space’ — CHR$ 80h — rather than the
normal space, CHR$ 20h. The black square is CHR$ 8Fh, so it
becomes a matter of changing the second nibble only to get the results we
want. In the routine below, this is done at F017h-F01Fh, using the carry,
generated by an RLA (rotate left A) operation, to jump over the
operation not required.

The same technique for restoring the print position is used, but now we
have to move it back eight positions and down one.

Chapter 4 Even Bigger Characters

GRAPHIC ‘SPACE’

GRAPHIC ‘BLACK SQUARE’
PRINT

NEXT LINE

BACK 8 COLS.

Since we are now dealing with complete print positions to build up our big
characters, there is no reason why we should not get the same effect by
using the attributes file, rather than the display file, to hold the enlarged
graphics. The routine needs very little alteration — just setting up the
address in the attributes file in DE and doing the re-addressing between
lines by a simple addition, rather than the ROM routine used for the
display file.

X8 Letters with Attributes only

31

Machine Code Sprites and Graphics for ZX Spectrum

INK 0; PAPER 0

INK 7; PAPER 7

(32 — 8) PRINT POSITIONS

INTO DE

The fact that we are not using the display file, even though the result looks
like printing, opens up some curious and interesting possibilities. If, when
you have entered the machine code routine above, you can bring yourself
to enter the rather shaming little program below and RUN it, with the
printer hooked up, you will get a result which, though predictable, still
makes you think....

More of these uses of the attributes and display file in a later chapter.

Peekaboo

DR THT

£

T

32

CHAPTER 5
Sideways Characters

New character sets

There are a number of other variations on the Spectrum printing schemes
which we can try out. So far, we have only considered techniques which
produce letters in an ad hoc way, as they are needed for the display. This
is perfectly adequate when the new lettering is needed only now and then,
but the routines tend to be on the slow side, as they work a letter at a time,
and this could be a disadvantage if you wanted to produce large parts of
the display in the new lettering.

The new letterings we shall be discussing now are better adapted to use
as completely new character sets, created in advance. They can be used as
required, by POKEing the system variable CHARS with the new address
minus 100h (256d). The set in the ROM can always be recovered by
POKEing the same variable with its usual address, 3C00h. (The actual
character set starts at 3D00h.)

One feature which all of these new sets of characters have in common is
that they are all based on the existing Spectrum set: I am not suggesting
that you should laboriously type in 96 or so new characters, each of eight
bytes. Life is too short. The object of the present chapter will be to show
you how to write programs which will generate new character sets on the
basis of the old.

Sideways characters
The first altered character set I want to consider is one which uses the
ordinary Spectrum letters, but prints them on their sides.

This can be very useful if you want to present results graphically, for
business or scientific purposes. It is an absolute must if you have a
horizontally-scrolling display, which needs to carry a title at some single
location. Figure 5.1 shows the sort of thing I mean.

In fact, the ‘sideways characters’ can be generated one at a time, as we
have been doing so far. But if you have space to spare in RAM for a
complete character set (it takes 300h (768d) bytes) this is much quicker
and easier to operate.

33

¥

Machine Code Sprites and Graphics for ZX Spectrum

r

1984 RDJUSTED

21242371 Y rqqnd

Monthly Mean OCutput

Figure 5.1: Sideways Character Set

First of all, let’s look at what we have to do and how we are going to do
it.

Turning letters on their sides

As we know, a character is made up of eight bytes, each coding for a line
of the printed character. Capital ‘A’ looks like Figure 5.2.

2 @@ @ @@ @@ Bdte 1 - B
2 e BEEBBRB e @ sute 1 - 3C
| F B oe o Me Bute 1 - 4
a B o 6@ @ Bao Byte 1 - 42
s E B EAEBRAe Byte 1 - TE
a B e eecef@e Byte 1 - 42
2 8 @ 2 a a BB é Byte 1 - 42
2 23 2 @@ 2@ Bytse 1 - @@

Figure 5.2: Capital ‘A’

To lay the ‘A’ on its side, we have to strip off the matching bits from

each byte, one at a time, and re-form them into eight new bytes, which
will look like Figure 5.3.

34

Chapter 5 Sideways Characters

B 0% 6 08 B R Byte 1 - OG
s EBEBEHHREO® Byte 1 - 70
2 0 0B o aBEBoe Bute 1 - 13
? e e Moo HEe@ Byte 1 - 12
a3 e Meao e Byte 3 - 12
2 e @Boee@®oO Byte i1 - 1B
2R BB BE®OO @ Bute 1 - 7C
2 P2 @ O @ @O Bute 1 - @&

Figure 5.3: Capital ‘A’ on its Side

You can see that the first byte of the new character is a line of zeros
corresponding to the lefthand column of bits in Figure 5.2. Byte 2 in
Figure 5.3 corresponds to the second column of bits in Figure 5.2, and so
on.

What this means, in programming terms, is that we have to rotate each
of the original bytes in turn, so as to shed a bit at a time into the carry.
Each time we do this, we scoop up the carry and transfer it to the new
byte, which we are building up.

To do these operations, we have to have a scratch-pad: it is impossible
to do any rotations, or other operations, in the ROM. So the first move is
to transfer all eight bytes of the original character to a new address (I
suggest MEM, the Spectrum calculator memory location, which is as
handy as any). Supposing the address of our character at MEM is in HL,
we can do an ‘RL (HL)’, followed by ‘INC HL’, followed by ‘RRA’ —
and then repeat this seven more times. This will give us our new byte in
the A register.

Here is the relevant listing (HL holds the address of the character in the
ROM):

Single Sideways Letter

GET CHR INTO SCRATCH-PAD
SCRATCH-PAD ADDR INTO HL

35

Machine Code Sprites and Graphics for ZX Spectrum

LOAD NEW BYTE INTO UDG

BACK TO START OF
SCRATCH-PAD

To do our usual ‘one off’ transformation, we just have to add the standard
opening, which recovers the code of the character from LAST K.

Sideways Printing

Chapter 5 Sideways Characters

To create the complete character set, we need an address at which to start
the new set, and we also need to make a few modifications to the routine.

It’s a good plan to start the new characters at an address ending in ‘00’.
This is because the ROM set starts at 3D00h, so, if the new address also
has ‘00 as its second byte, we only have to alter the first byte to swap
addresses. This means changing the number held at 5C37h (CHARS + 1,
23607d) in order to switch the sets. I have suggested ‘E000h’.

We use the alternate registers to hold the overall count for the total
number of characters in the set — 60h, or 96d — and also to handle the
transfer from ROM to scratch-pad for each letter. Notice in the listing
how the first action on moving into the alternate registers is to ‘PUSH
HL’: the final action before leaving them for the last time is to ‘POP HL
again. This preserves the important address held there by the Spectrum
for its own business. Notice also how, after each transfer to the
scratch—-pad, HL conveniently points to the next letter, because it has
been moved up by the ‘LDIR’ instruction.

Sideways Character Set

START ADDRESS NEW CHRS

START ADDRESS ROM CHRS

SCRATCH-PAD

SCRATCH-PAD

37

Machine Code Sprites and Graphics for ZX Spectrum

JUMP TO NEXT CHR

Once the routine has been entered and RUN, you will create a complete
new character set starting at E00Oh. If you write a BASIC program and
incorporate the line ‘POKE 23607,223’ (= DFh, 100h — or 256d less
than the start address for the characters) everything you print will be
sideways.

But remember to incorporate ‘POKE 23607,60’ somewhere, or you
may be stranded with some very odd listings (see Figure 5.4)!

P& WOD g H0 G 4T N0
NE WOD ey p@iHZY ~DZ0x0- <0 =E
'SIE!HI-i D e Gl FXS e ZRx-E

z- I?ﬁ Lo Lol DL N I O O

. ! ! S iﬁi 5?!_*3 §:D-! o B STl TR
{_':r .--"DC:-* 5

A TIRZ- D p O pORE DOLCH-ED

P86 ODH4D LDF ~ UMD -~ IDD - DTS
™~ ZD{ -~ ‘C.C" >~ LT o~ BOE o~ (B -
0N o~ Z0C ~ PmD =

=830 TOAM mh‘lmﬁ'\!*- TR

= MOD epe H0 PG GEMT e [NDT
Jg¢ BOD e Ho e TIHZES D o =
< DFatn] PO ZHXA - ZAX = .
=30 M0Y o S0 W TIRZ DY o B
#e- QCIMD e - ZAX- o

=00 Cm-1 2es N _JBCpo=vT M<K~ -
PHAE MDD .y -0 FNZ See TIRZH4 T
o - I\ = Fhx- .

Figure 5.4

One final point — the key operations are ‘RL (HL)’ and ‘RRA’. By
changing these, you alter the sequence in which the bytes are stripped and
re-assembled, so that you can make the letters face in various different

38

Chapter 5 Sideways Characters

directions, though always on their sides. Figure 5.5 shows the four
possible configurations, two mirror-image and two normal.

o

RL (HLIY + RRS& GuomO-+4nC
RR (HLY + RRA WaWo-4nCxI
RL (HL) + RLA aOmOoFTDE
RR (HL) + RLA @OLUORE3X

Figure 5.5: Letters Facing in Various Directions

39

CHAPTER 6
Small Characters

As I pointed out earlier, the Spectrum character set uses a good many
more bits than are absolutely necessary to produce a legible set of
characters. By reducing the number of bits used horizontally to produce a
character — that is, by squeezing the character sideways — we should,
theoretically, be able to print more characters per line. This could be a big
advantage, especially when we all get our Microdrives and have plenty of
memory to splash about in.

One of the things we would like to do would be to enter sizeable chunks
of text, but, even if we get them into memory, when printed out at 32
characters per line we can’t get much on to the screen. It becomes more
like reading a telegram than a page of print.

Six-bit characters

It is really quite simple to produce squashed-up versions of the standard
Spectrum character set. You can generate the new set by picking out just
six (let us say) of the eight available bits, which make up each line of a
character (Figure 6.1).

Figure 6.1

The standard last bit is always blank, anyway, so you are really only
scrapping one bit per byte. Figure 6.2 is a complete set of capital letters,
generated in this way. They look quite convincing, with the exception of

ABCDEFGHIJKLMNOPORSTUUUXYZ
Figure 6.2

41

Machine Code Sprites and Graphics for ZX Spectrum

the “T” and the €Y, which have suffered serious losses, and the ‘I’ which is
lop-sided.

The machine code principle behind the making of these letters lies with
our old friends, the ‘rotates’ and the ‘shifts’. The routine gets each byte of
the standard characters into the A register and then slides off the
component bits, one by one, into the carry. Then it picks up the bits
needed for the new character from the carry and transfers them to a
waiting byte at a new address, which is addressed by HL.

6-bit Characters

The automatic loading instruction ‘LDI’ is ideal for this, as it both
‘increments’ the HL and DE registers and ‘decrements’ the count in BC.

While the capital letters — and even the numerals — can be
transformed quite effectively using this particular mix of bits, the lower
case letters don’t do quite as well (Figure 6.3): ‘a’ and ‘b’ are all right, but
as for ‘t’ and ‘f” — oh dear!

I'was, in fact, exaggerating a little when I said that all these characters
could be generated automatically from the original Sinclair set. Most of
them can be, but there will always be mavericks which will have to be
adjusted individually.

42

Chapter 6 Small Characters

n

) e
iy
i
1S
4]
Tt

3 456 123 456 _1_!.1._::‘3 4586

Ll

T
NN ENEN
i

Figure 6.3

To do the adjusting, I have devised a program called Titivator which
will let you refurbish any character you want to, once you have
automatically generated the rough versions starting at E0OOh. The
program will display enlarged versions of any of the new characters you
choose and will let you enter the binary codes of each line, so as to build
up a revised character. Figure 6.4 shows how the display appears.

j_! IR
n u
-
AR
TEENE& (. ek, -, FOL234TE6VEY (=T
SABCDEFEHIJKLMNOPORS T UVUXYI LN ~
fabecde "ght jk .hnopqrsTUuvuxXyz £l T4
Figure 6.4

A single keystroke will display your chosen letter, enlarged and normal
size (in true and inverse video) with the complete character set below
that. If you want to alter a character, you can do so by keying in ENTER,
when you will be able to enter each line (ie byte) in turn, in binary. (You
need not enter all the terminal zeros — ‘0101’ is the same as ‘01010000’.)
Before writing the program, you must put the code for ‘ X8 Letters’ (at the
end of Chapter 4) into a REM statement, in line 1 (this will take 54
spaces). Then fill in the rest of the BASIC program.

Titivator

43

Machine Code Sprites and Graphics for ZX Spectrum

I don’t think that the BASIC program should be puzzling, but here are a
few notes.

Line §: Stops the automatic listing from getting bogged down with an
‘unlistable’ line 1, due to the machine code. It POKEs the system variable
‘S__TOP’ with a number greater than 1.

44

Chapter 6 Small Characters
Lines 6-8: Generate the UDGs to draw a grid on the enlarged letter.

Line 10: Changes the channel so as to print on the lower screen, and then
changes it back again.

Line 30: Switches to the new character set (at 57344d) and places the
required character CODE in ‘LAST K.

Lines 50-70: Print the grid.

Line 80: Gets the start of the machine code program. The address of the
BASIC program, in the system variable PROG, can change, although in
practice it always stays the same unless the Interface 1 is connected.
Without the interface, you could make it ' RANDOMIZE USR 23760,
but it is probably safer to use the indirect addressing.

Line 110: Switches back to normal characters.

Figure 6.5 shows what the six-bit character set looks like after half an hour
with Titivator. It is greatly improved. I leave it to you to attend to the
punctuation marks etc....

ABCDEFGHIJKLMNOPQRSTUVUX
abcdafghigkLmnopqrstuuux

@L2345678

z
z

e~

Figure 6.5: Six-bit Character Set

As it stands, the new set has no advantages over the old, because each
letter still occupies a full eight-bit print position. We still need to reduce
the spacing between the letters. This can be done, but it needs some solid
machine code programming, which is better left to the next chapter. In
the meantime, let’s look at another character set which is, if anything,
handier than the six-bit set — the four-bit set.

Four-bit characters

It may seem surprising, but you can generate letters using only a width of
three bits, plus an extra bit for the space between letters. They may not be
the prettiest letters in the world, but you can read them, and you can geta
full 64 letters to the standard Sinclair line! That’s as many as on a normal
printed page. See Figure 6.6.

The beauty of this particular system is that two four-bit letters fit neatly
into a single eight-bit print position. And the double character can be
produced quite easily with a little ANDing and ORing, as we shall see.

But first, let’s generate the characters.

45

Machine Code Sprites and Graphics for ZX Spectrum

This i5 an exanple of printing, using a 4-Rit tharacter fei,

I 15, really, qeite readsbie and alloms ene to enter o Fuli-
tength Line of fext, wsing the novmal $inclair SPECTRUN displ 2%
Facik ities,

Exch Character wses only three Bits, horizontatlly,mith the 935
it 3% 3 standard space between letters.

A Full set of characters can be generaied, tosether Mith the
raperals, Q12356789 and the wsual punctuvation marks.

Figure 6.6: Four-bit Characters

The machine code listing is very much the same as that for the six-bit
characters. However, since we have only three bits to play with, the
selection of the right three bits has to be judicious. In fact, I find that it’s
best to take two bites (no pun intended) — the first selection to cover the
lower case letters and the second for the capitals and numerals. For the
other characters, you must judge for yourself.

Here is the listing which I have found best for lower case letters.

Four-bit Characters

There are two things to note here. First, I suggest placing the new
character set at FCOOh: since you will be using 300h bytes, this is about as
high as you can get without crashing the UDGs. You will want to save the

46

Chapter 6 Small Characters

set once it is made, probably with the operating program, and it is more
convenient to save a chunk of data up to the top of RAM.

The second small point is that I have incorporated two instructions, at
F00%h and FOOAh, which clear the byte you are going to use in HL. If
you don’t do this, you will wind up with pieces of whatever was there
before, incorporated in your characters.

Figure 6.7 shows what the set looks like after the first operation, if
you have got Titivator in place, with line 30 reading ‘POKE
23607,251...".

FrdsS3 th e e, sELERCEETEC 1z

i?EESEFEfIuiLF&CFiFST[&i.‘H‘!."-,I?y

A Tix:zcdefghijrlenapy"stuvesygs T
Figure 6.7

To get the capitals and numerals, switch the instructions at FO18h and
FO1Ah, so that they read ‘RLCA RL (HL)’, rather than ‘RL
(HL) RLCA’. You’ll also have to make line FO006h read
‘LD BC,0200h’.

After running the routine, your combined set should now look like
Figure 6.8: a bit rough here and there, perhaps, but beginning to be
recognisable and readable.

§ 49 <88
o B e
o8 AR
XL N1
€ OST 0
P i
gy "G o
oy S
o as
-y f o
G s G 000
o B
O e
.‘#:E-
o T Pad
U % b
o e 0
& 4=
o5 SR
®emed
Y- LR
feg B0 8
Bl Gl g
§ e

i ar
L 1 §

.3

A

ML
¢P
¢p
6.

Figure 6.8

After a final session on Titivator, you might wind up with something
like Figure 6.9. It will never be perfect, of course. The most difficult
letters to manage are, ‘H’, ‘M’, ‘N, ‘W’, ‘n’ and ‘m’. There simply isn’t
enough information in three bits to differentiate them. You have to
cheat, and trust that people’s eyes will see what they expect to see —
and, by and large, they do.

3

&
b

ik

[- T

£
Lo

- Rl
e] et
feow v e B
?'ﬂf

ieko
cinne

','.'3#!-
e W- 4.9
W Ao dad
et nef 2
&3 2 an
g o5
- -]
e B0
R -]
P el

SRBEDEF G 1
fabcdefy N

-l X -
2 B3 et
o Bl gy
o by

Figure 6.9

Here are my designs for the problem letters (Figure 6.10); they look
very unconvincing when enlarged, but work pretty well in a piece of
text. You may consider that some variations on these would look better.

Having achieved your four-bit character set and stored it safely on a
cassette, you have next to consider how to use it.

47

Machine Code Sprites and Graphics for ZX Spectrum

H M N W m n

Figure 6.10: Designs for Problem Letters

There are various options. You may want to use the characters to print
out text, or data, which you have stored in the RAM. You may want to
use the letters as part of a system for inputting text to the RAM. You
might even combine the two and have the elements of a word processor.

We’ll consider only the first option here, printing out text. I've called
this ‘“Typewriter’.

Typewriter
Here, we have to pick up letters from the keyboard, as we have done
before, find their address in the character set, and then...

And then comes a difference from what we did before. We have to find
some way of making a composite character out of two consecutive
keystrokes. To do this, it is simplest to split the program into two parts. A
subroutine, called from the main part, finds the character (and looks after
a few other things, like breaking out of the program and coping with
erasures and line feeds). The main routine combines the characters and
prints them.

The subroutine has the most familiar material, so let’s deal with it first.

Four-bit Characters — subroutine

BREAK KEY = ‘1~

NEW LINE

BACKSPACE

Chapter 6 Small Characters

CAPS SET

FIND CHR ADDRESS

BACKSPACE

‘SPACE’

BACKSPACE

SET/RESET CAPS LOCK

DISCARD RETURN ADDRESS

The first four instructions are a ‘wait for a key’ routine. This is a machine
code alternative to the BASIC ‘PAUSE (’, etc., which we used in the
demonstration programs earlier. It works by first resetting byte 5 of the
system variable FLAGS at 5SC3Bh (23611d). As the IY register in the
Spectrum normally always holds the address SC3Ah, all the system
variables can be accessed as offsets from this base.

Next, bit 5 of FLAGS is tested repeatedly. As long as no key has been
struck, bit 5 remains zero, but, as soon as there is a key input, the bit gets
changed to ‘1’ and the ‘JRZ’ fails, so that the A register gets loaded from
LAST K (5C08h).

What we’ve discussed here is another handy little routine to allow you
to access the keyboard.

Immediately after this, the routine tests for four special cases, which
sort out four individual key codes for attention elsewhere.

49

bibag

Machine Code Sprites and Graphics for ZX Spectrum

SE — I have chosen as the BREAK key. Itis ‘ 7 > and, by holding on to the
zero flag, when the input subroutine returns to the main routine, it will
cause a RETURN from the entire program.

0D — is the code for ENTER — or new line/carriage return. It simply
prints itself (which gives the new line) and jumps back to the start of the
main routine. This is done by POPping the normal address off the stack
and doing a straight jump.

0C — is the code for DELETE. When this is matched, the routine jumps
to F15Ah. Here, the routine first prints a backspace (code 8, cursor left),
then prints a space, to blot out whatever was there before, and finally
backspaces again, to restore the print position. The routine then jumps
back to the start, using the same route as before.

06 — this, to my surprise, is the code from CAPS LOCK. The routine
jumps to do precisely that — locking, or unlocking, the CAPS LOCK by
an XOR operation (see later in this chapter). Then it jumps back to the
start, to see what you actually want to print.

The rest of the subroutine from F14Ch, should be familiar, too. It
calculates the address of the character in the new character set and
returns with this information to the main routine.

The main routine CALLs the subroutine twice — once for each of the
characters which make up the composite ‘double character’. As so often,
these characters are put together in the UDG. Here is the listing.

Four-bit Characters Entry Code — main routine

UDG ‘A’

SUBROUTINE
BREAK-ROUTINE ENDS

ThE L
DUIRMZ Fas

Chapter 6 Small Characters

PRINT UDG ‘A’

PRINT BACKSPACE

SUBROUTINE

BREAK-ROUTINE ENDS

COMBINE TWO CHARACTERS

PRINT UDG ‘A’

Both halves of the main routine start by getting the address for UDG ‘A’
into DE. Then they CALL the subroutine.

The subroutine is arranged so that it only returns with the zero flag set,
if the BREAK character has been found. In all other cases, the flag is
reset. The ‘INC C’ at F158h has no other purpose but to ensure that the
zero flag is not set when the subroutine returns.

If the zero flag has been set, the ‘RET Z’ instruction ensures that we
drop out of the program.

If all is well, the first part of the main program then eases our four-bit
character over into the left-hand nibble and loads it into UDG ‘A’.
(There is, of course, nothing magical about UDG ‘A’; it could equally
well be UDG ‘U’, or any of the other UDG characters.) The program
then prints the new character and immediately prints a backspace, so as to
restore the print position.

In the second half of the program, which deals with the next character
input, we fetch the eight bytes for the first four-bit character in DE, OR
them with the new character in HL, and load the result back into DE.
This is UDG ‘A’, which we print again. Then we jump back, to start all
over again.

The effect on the screen is that of printing each four-bit character in
turn. The DELETESs and ‘new lines’ work much as you would expect,
except that the DELETE rubs out two characters at a time, because it can
only deal with a complete print position.

51

Machine Code Sprites and Graphics for ZX Spectrum
Logical operations
The logical ORing, as carried out by the microprocessor, is a neat way of

combining the two characters. Two letters, when they are ready to be
brought together, look like Figure 6.11.

j_Ji Byte

b

mu

SIOARYMDES
S uluEdaling Qo)

Figure 6.11

The ‘G’ has been shifted over to the left by the operations at FI0Ah to
F10Dh. It is now in the UDG, addressed by DE. The ‘H’ is in the new
character set, addressed by HL. The A register picks up the letter ‘G’, a
byte at a time, and compares it with the corresponding byte, held in HL.

The twofirst bytes aren’t much use for looking at, as they are both blank,
but if we take byte 1:

A holds 0010 0000 (HL) is 0000 0101

The OR operation, here, is exactly what it sounds like —the two bytes are
compared and, if (HL) or A have a bite setin a particular position, then the
final bit will be set, too. So the final byte — still in A — will be

0010 0101

Thisisloaded backinto DE, toreplace the existing character. (For the sake
of interest, if we had been ANDing, then both (HL) and A would have to
have a bit set in the same position for the final bit to be set. In this case, the
final byte would have been ‘0000 0000’.)

When all the bytes in both characters have been ORed together, the
result will look like Figure 6.12.

As we are discussing logical operations, we might just look at the XOR
which I said, rather airily, a few pages back, was used to set, or reset the
CAPS LOCK.

52

Chapter 6 Small Characters

I ﬂif

Byte

NONERULE
[TTTT

Figure 6.12

The operation in question went like this:

Set/Reset CAPS LOCK
== SR = . S, (SOEAD
EE G xnl= @
0 ER EC [SOEET L.

A collects the byte from the system variable FLAGS2 at SC6Ah (23658d).
Bit 3 of this byte controls the CAPS LOCK; it’s on if the bit is set, off if it’s
not set. Let’s assume it is not set at the moment, so the byte will look like
this:

xxxx 0xxx

(‘x’ means that we don’t know, or care, what is going on in that particular
bit.)
Now, we are going to XOR it with 08, which is,

0000 1000

At this point, XOR works just like an OR operation: that is, if the byte in
A or the other byte have a bit set, the final bit will be set, too. So our final
byte will be,

XXxx 1xxx

We load it back to the system variable and hey presto! WE ARE IN
CAPITALS!

But now what happens when we do it again, next time round? XOR is
not the same as OR: if either the bit in A or the corresponding bit is set,
the final bit will be set. But not if they are both set — then XOR resets the
bit. So when ‘xxxx 1xxx’ is put up against ‘0000 1000’ and XORed, you
finish with ‘xxxx Oxxx’— and we are back in lower case again.

53

Machine Code Sprites and Graphics for ZX Spectrum

The ‘x’ bits always remain unaffected, because they are XORed with 0,
so they will be set or reset only according to the contents of the byte in A.

You can see that the XOR operation is a classic way of switching bits on
and off in the course of a program.

54

CHAPTER 7
Printing Six-bit Characters

Printing six-bit letters so as to display them at 40 characters to the line is
rather more complex. They have to occupy three-quarters of the space, as
compared to a normal eight-bit letter. The illustrations will make it clear
what we are up against.

Figure 7.1 shows the letters, as stored in the new character file.

1iil HRRNN 1114 Ji!!jl

il

- S W —

Jl

f
11|
71T]

f L) 1T

NN

Figure 7.1

We need to rearrange a block of four letters, so that it is printed like

Figure 7.2.
j.J i L1l 11 |

Figure 7.2

First, you must realise clearly that there is no way, on the Spectrum,
that you can directly print a character offset to the left or right. The print
positions are laid down hard and fast.

To print a character which is laterally offset, you have to spread the
character over two print positions — to generate two new characters, one
containing the left part of the old character and the other holding the
righthand part. Then you print these, side by side — et voila!

In the present case, you can see that the letter ‘B’ has been shifted to
the left by two bits, the letter ‘C’ by four bits, and the letter ‘D’ by six bits.

55

Machine Code Sprites and Graphics for ZX Spectrum

So that we have, as it were, three composite characters holding the four
original letters.

We'll look at the shifting processes required to move over the
characters later, but it is plain that we shall have to organise some kind of
counter to deal with the number of bits shifted — two, four or six.

Organising a counter

Let’s consider this counter first. Since the routine is going to be called to
cope with each letter in turn, the counter will have to be kept in a
‘fire-proof’ location, where we can always get at it, but where it won’t be
lost whenever we go back to BASIC.

One address which answers this description is the ‘unused’ system
variable location at 5C81h (23681d). We could initialise this before we
start using the printing routine, and arrange for it to have 2 added to it on
each pass of the routine. The routine must also recognise when it gets
greater than 6 and zero the byte again.

Here is a short piece of code, which will do that:

21 81 5C LD HL,5C81

34 INC (HL)

34 INC (HL)

7E LD A,(HL)

CB 5F BIT 3,A

28 02 JR Z, Next Op.
CB 9E RES 3,(HL)

Next Op.

Notice how we spot that the counter has gone past ‘6’, and how we zero it.
When the routine adds 2 to a ‘6’ in the byte addressed by HL it increases
to 8, which means that it sets bit 3 for the first time and resets the lower
bits in the byte. By loading A from HL and testing bit 3, we can spot when
it has reached ‘8’. Then, by resetting bit 3 in HL, we clear the byte in the
counter. We could, of course, test the bit in HL directly, but we need it in
A to use it as a counter, so we might as well test it in A.

Shifting the letters
The business of getting the letters shifted into their new positions is fairly
simple but laborious — like a lot of machine code.

We need three UDG characters to operate with (I have chosen UDG 1,
2and3—A’, ‘B’ and ‘C’). Of course, in the routine we have to operate
a byte at a time, but the principle shows up more clearly if we illustrate it
with the complete character position of eight bytes.

56

Chapter 7 Printing Six-bit Characters

If character ‘A’ is the first letter in the block of four and character ‘B’ is
the second, then we first place ‘A’ in UDG 1 and ‘B’ in UDG 2. Then we
start shifting ‘B’ to the left, with an arithmetical shift, which places a ‘0’ in
bit ‘0’ and pushes bit 7 off into the carry. When that has been done, we
scoop up the carry with a rotate left operation and transfer it into the
blank UDG 3 bytes. After this has been done twice (for the whole
character position), the two characters will look like Figure 7.3.

P }

|

UDG 2 UDG 3
Figure 7.3

Now we can OR UDG 3 with UDG 1 (byte by byte, of course) and we
have our first two characters correctly spaced in UDG 1 and UDG 2,
where we can print them (see Figure 7.4).

]

UDG 1 UDG 2
Figure 7.4

Two things remain to be done, before we can move on to the next letter
in our block. First, we must backspace the print position so that it points
to the place where we printed UDG 2. We shall be printing pairs of
UDG 1 and UDG 2 all the time, but each time backspacing so that we
pick up the former UDG 2 position.

Next, we have to get the former UDG 2 into the new UDG 1, leaving
UDG 2 available for the next letter.

The beginning of the next print cycle sees the two UDGs looking like
Figure 7.5.

Now we can shift the ‘C’, using the same techniques, but this time for

57

Machine Code Sprites and Graphics for ZX Spectrum

LT d_[!i!%

|
1]

UDG 1 UDG 2

Figure 7.5

four bits, rather than two. When that is done, we adopt the same system
to deal with ‘D’, making a 6-bit shift, after which our printed block will be
complete and we start the cycle over again.

Here is the complete listing:

Six-bit Code Entry

GET ADDRESS IN NEW CHAR .-
SET FOR CHR IN LAST__K

LOAD NEW CHR INTO UDG 2

CLEAR UDG 3

INC COUNT

CHECK? COUNT = 8
JUMP IF SO

Chapter 7 Printing Six-bit Characters

} SHIFT CHR POSITION IN
UDG 2/3

‘OR’ UDG 1 AND UDG 3

PRINT UDG 1

PRINT UDG 2

PRINT BACKSPACE

TRANSFER UDG 2 TO UDG 1

The actual sequence of operations within the routine, is that described a
few pages back, but there is a certain amount of fancy footwork in the
addressing, which perhaps needs some comment.

Saving bytes

The first thing to note is that most of the addresses deal with the three
user-defined graphics, UDG 1, 2 and 3. All these have addresses
beginning ‘FF..’. In addition, these addresses are confined to the two

59

Machine Code Sprites and Graphics for ZX Spectrum

registers HL and DE, where they are used to transfer our characters at
various stages. This means that, once these registers have been
initialised, the first byte (the byte in H and D) remains unchanged so that,
instead of using the three-byte instructions ‘LD HL,xxxx’ and
‘LD DE,xxxx’, we can use the two-byte instructions ‘LD L,xx’ and
‘LD E,xx’. -

Another byte-saving operation comes at FBB7h, where we clear UDG
3, in order to make it ready to receive our new character. UDG 3 starts at
FF68h, and it so happens that DE holds this address at the end of the
LDIR operation in the previous section. So we don’t need to re-address a
register in order to do the clearing operation. Another three bytes saved.

Similarly, at the end of the shift operation DE points to UDG 3. We
actually want this address in HL, for the next section, so we get it there by
doing ‘EX DE,HL’, after which we can re-address the new DE.

Again, at FBF7h, the two registers HL and DE are unaltered by the
‘RST 10’ operations. HL already points to UDG 2 (after the end of the
previous section), so we only have to change the E register to get both of
the required addresses for the final transfer.

The way we check and zero the count is worth a glance, too, as itis a
slight variation on the basic method explained. The counter number is
held in 5C81h. First we increase this number by 2, and get it into A. We
test bit 3 of A, to see if the number has reached 8. If bit 3 is set, the
number is ‘8’ and the zero flag will be reset by the ‘bit’ operation. If bit 3 is
not set, the number has not reached 8 and the zero flag will be set.

This zero flag is used to control two conditional jumps, which combine
to route the program in the way required.

In the first case, if the zero flag is not set, the first jump, at FBC6h, is
skipped. The routine goes on to ‘RES 3,(HL)’ and ‘LD HL,FF60’.
Neither of these operations affects the flags, although you might think
that the reset operation would do so. So the zero flag is still in control and
will cause a jump to ‘PRINT UDG 2’, at FBF1h. When we get to the
final transfer at FBF7h, HL will be ready with the right address.

In the other case, where the zero flag /as been set (ie the count is less
than 8), the roles of the two jumps are reversed. The ‘JR Z’ at FBC6h
will cause a jump to ‘LD HL,FF60’ at FBCAh, skipping the reset
operation. Then the ‘JRNZ’, at FBCDh, will be ignored and the routine
will continue with the character shifting operation.

This double shuffle is needed because both sections of the routine
require the same address in HL, but we can’t load HL before the bit test,
because it holds the address of the bit we are testing! The technique does
not require any extra instruction in the program, and it saves three bytes
for another ‘LD HL ,xxxx’ instruction.

All this cheese-paring over bytes is not absolutely necessary, but the
savings can mount up over a long program. In the present case, it saves

60

Chapter 7 Printing Six-bit Characters

about 16 bytes over a fully-addressed routine, equivalent to about 15%.
The way to do this is to get the program working in the simple extended
mode and then analyse it to see whether there is scope for worthwhile
compression. It’s unwise to try and plunge right in with the clever stuff.

Using the six-bit characters

Even though we have achieved the ‘40-character line’, there are certain
restrictions,on using this technique. Although it is possible to include a
new-line facility, much as we did for the four-bit routine, there isn’t a
really satisfactory way of doing a backspace to correct an error, because
of the way the letters overlap the bytes. In fact, I cannot see much point in
using this technique to produce a printout on the screen, in the typewriter
mode.

The real future of the six-bit character set lies in its use for printing out
labels or text. For example, if you have an address book or a telephone
directory program, the entries could be printed out much more neatly and
economically using the new character set. This means that you would be
picking up and printing existing strings, or other data, where the lack of
correction capabilities would not matter. Figure 7.6 shows the gain in
compactness.

This 15 & 32 charagcter Ling ¥
Thiz i3 & 48 character Ling. in B6-BIiTxx¥

Figure 7.6

To access the routine from an existing string, you would need a BASIC
program something like this:

Six-bit Printing — demonstration

i
[
i

10 LET wH="Thiz iz 3 4@ characis
in E-BIT#xz"

2R PRIMT AT 2,2 uHk
R ROREE '
4@ Fok =l oOLEM wH i RAMNDOMIZE USR

2 HEXT g

The POKE in line 30 initialises the counter at ‘6’. This means that the
routine will print the first letter as the start of a block of four in the
position of letter ‘A’ in Figure 7.2.

These printing suggestions would not be of much practical use if we

61

Machine Code Sprites and Graphics for ZX Spectrum

could not use the printer. Here again, this can be done, but you have to be
slightly devious to manage it.

The trouble is that the LPRINT command, which outputs to the printer
buffer, seems unable to cope with the backspacing and other peculiarities
required to print our pairs of UDGs. The solution is to prepare a
complete line in.advance in the display file and then send it to the printer,
using a modification of the COPY command.

As constituted in the ROM, the COPY routine sends the entire display
to the printer, a pixel line at a time, jumping around in the display file, so
as to achieve consecutive lines, in spite of the awkward arrangement of
the file (see Chapter 9). '

We only want to send eight lines of pixels, so the re-addressing required
is minimal. We can butcher the ROM COPY routine (which starts at
OEACh) to make a simple version to pick one line off the screen and
COPY it to the printer.

The line of six-bit printing has to be put on the screen somewhere,
before it can be COPYed, and perhaps the most suitable place is in the
lower screen, where it won’t interfere with the main display. This merely
involves including ‘PRINT #1;’ in the BASIC program given above.

The reorganised COPY routine goes like this:

PRINT Line 1 in Lower Screen

FFE@d

Hi. , S@3ED® ADDR OF LINE 1 IN LOWER
SCREEN

SEFA CALL PRINTER SUBROUTINE
B
FoE M

]

Irc H

DUMT FRES

m

il @ES FINAL SECTION OF COPY ROUTINE
[

I

mo

=y oM
2
m

o3

i.l. 2Ed 4 CLEAR LINE ROUTINE
=T

T
m

It starts off with a ‘disable interrupts’ instruction, as does the original
ROM COPY routine. We provide an eight-digit counter in B and load
HL with the start address of the first line in the lower screen, which is
50EOh. The actual printer subroutine is at OEF4h, which sends a single
line from the screen to the printer buffer. ‘INC H’ re-addresses HL to the
next line of display. The routine goes back to the ROM at OED Ah, for the
end section of the ROM COPY routine. This actually LPRINTS the line

62

Chapter 7 Printing Six-bit Characters

and finalises. The last two instructions before RET are for good
housekeeping. They clear the bottom two lines of the display, ready for
another bout of printing.

The routine used for this purpose is the ROM CL__ LINE subroutine at
OE44h. This clears the number of lines specified in B, from 1 to 24,
starting at the bottom of the display. It is an extremely useful supplement
to the full CLS routine at 0D6Bh.

Assuming your coding is grouped as follows, we are ready for the final
BASIC program.

FBAO-FBFD 6-bit print 64416d start
FCO0-FEFF character set
FFO00-FF18 COPY 65280d start

Here is the BASIC demonstration program:

Six-bit Character Printout

1& LET wH="Thisz z 5 48 charactie Linme
in BE-BITssxx"

=@ FRIMT AT 2.8, us

S 2 16 .

48 FOoR j=1 TOo LERM wHi it RAMDOMIZE USSR
Zadd 15

5@ MEET

TE ORAMDOMIZE SR EDzad

If the sight of lines of text flashing on and off at the bottom of the screen as
they are sent to the printer bothers you, you can add ‘INK 7;’ at the end of
line 30.

63

CHAPTER 8
Sprites — Animation

Everybody has to have sprites these days: a group of bytes — usually
containing a graphic image — which can be moved about the screen
independently of anything else on view.

The more ambitious sorts of sprite are under the control of a special
chip, which looks after the coordination of the separate bytes, so that all
the programmer has to do is to indicate the direction and range of the
movement. The Spectrum does not have such a chip, so all ‘spritely’
movements have to be done under the control of software.

There are three types of movement we shall have to consider —
movement within the sprite (or animation); movement about the screen,;
and (what may be slightly different) movement in front of, or behind,
other sprites or pieces of the background.

In this chapter, we’ll deal with the first type of movement, movement
within the sprite.

Drawing sprites

For any kind of animation, you need to prepare a cycle of drawings, each
one differing slightly from the last, so that when the cycle is run through
repeatedly it looks like movement on the screen.

It is perfectly possible to animate within a single character — the UDG
characters are very handy for this kind of thing, as well as for other
purposes. Here is an example — a nasty little face called Snapper which I
have used in games.

DATA for snapper graphics

Face 1 Face 2 Face 3 Face 4
126 126 126 126
255 219 255 255
165 255 153 153
129 165 255 153
129 129 165 255
165 165 165 102
102 102 102 60

60 60 60 0

65

Machine Code Sprites and Graphics for ZX Spectrum

Compile Snapper Graphics
SHRPPRERS

(RN

[

o FOFEE LSRR YAY+0.n0

(RO

A} 3
B e

This shows what the snappers look like.

Snapper

10@NFOR j=@ TO &

13168 PRINT AT 19,10 CHR% (14443
126 PRUSE 5: NEXT

138 PRUSE 1&8: GO T 1906

148 REM SNRARPPERS: QO D 6§ ©

But really to expand your artistic talents, you need more than one
character space — you need a sprite. Let’s say a block of nine character
spaces, making a 3 X 3 square.

Drawing within a 3 X 3 square has to be slightly more complicated than
drawing within one character. There are a number of drawing programs
available, but here is a simple one which I have set up to produce the kind
of thing we want.

Draw a Sprite

FRFER 57 " F
. FRAFER &;" ", P
FRFER 5,7 7, F

66

Chapter 8 Sprites — Animation

SE IF gg="%" THEHM

1 IF gx="3" THEM

=2 IF uf="&" THEHR

53 IF gg="T7" THEHN

T4 IF w9 THEHM LET
=g iy s IEE

5% IF J4g="@ THEM LLET = 4 = LET
oz - [TSR

e IF ug='d4 THEM LET = - @l LET 4
=y s

=7 OIF us="3Z" THERM LET =3 - G2l LET 4
=y - {215

=5 IF wH=CHREF 13 THER S0 T 19

@ B0 TO 2@

When the program is run, the cursors will print a line, a pixel at a time,
right, left, up and down. Keys ‘3’, ‘4’, ‘9’ and ‘0’ make the diagonal lines,
as shown.

Lines 15, 16 and 17 print a check in pale blue and yellow, which helps
you to find your whereabouts when plotting. The (x > 0), (y < 175),
etc., is to stop the dots running off the square. These expressions are
worth 1 if they are true or 0 if they are not true; so they will only change
the values of x or y if either x or'y are within the defined limits. In line 58,
‘13’ is the code for ENTER, which ends this part of the program.

Keying ‘2’ INVERTS the PLOT command (line 45). This means that
operating the cursors rubs out the pixels already written. This goes on
until you press ‘z’ again.

Now you can draw your sprite. It’s a help, sometimes, to have it
sketched out in advance on a scrap pad. Once you have completed your
sprite to your satisfaction, the next thing to do is to arrange to store it
somewhere. At the moment, it only has a precarious life in the display file
and on the screen.

Here is a program to store your sprite, byte by byte, in the upper RAM,
starting at address 61440d. There is nothing magic about this address, but
it has the convenience of being FO0Oh, which means that the LSB (least
significant byte) is zero. Since you will want to add to this number, it helps
to start at the bottom of the ladder.

Store Sprite in Upper RAM

5 LET m=1: LET &2=0: LET a=5144a
13E FOR E=@r TO
11é FOR 1=
1LEE FOR

Pl

fix fi

B TO

-4

67

Machine Code Sprites and Graphics for ZX Spectrum

1Z@ FPOMEE 3+ i+3% {1432k ,PEEH (183584453 %k
+E25E% i+ 10

T4@ HMEXT i HMEST i: MEYT &

158 LET qgq=g94+472

122 LET n=n+l: IF n«<S THEM &0 TO =@

The program is very short, but it brings in four new variables, which work
like this. The start address of each sprite group is pointed to by ‘q’, which
is increased by 72 on each pass (line 150). The loops controlled by k’, ‘i’
and ‘J’ select each byte in the group in order — ‘J’ picks the eight bytes in
the character space, ‘i’ picks the column position and ‘k’ the line position.

The 256’ tied to j” in line 130 is the result of the way in which the
display file is organised in the Spectrum (see the next chapter). All the
first bytes of the top eight lines of the display are scanned first, then the
second bytes, and so on (see p.164 of the Spectrum manual). This may
answer a deep-felt need in the Spectrum ROM, but it can make life a
misery for programmers, especially in machine code. You are always
having to add 256 and remember if you are in line 8 or 9.

The variable ‘n’ just controls the number of sprites we are generating. I
have picked four. Three is the absolute minimum for a reasonable
animation cycle, but four makes it much smoother.

Enter this program and MERGE it with the previous one. When you
come to RUN it, you will get a chance to design and store four sprites.
The second part of the program, which stores the sprites, takes a little
time to execute — wait for the next number to appear before using the
cursor again.

In this program, the current cursor position and the previous pattern
are preserved. Most animation consists of modifying a design, leaving
some of it unchanged: you can do this by using the ‘rub-out’.

If you want to have a blank screen each time, change line 165 to
‘GOTO 10.

Aroutine to view the finished graphics is quite easy to devise and will fit
comfortably into most programs. The trick is to change the system
variable UDG at 5C7Bh (23675d), so that it points to the start of each of
the sprites in turn. The respective characters will then appear in the UDG
positions, ‘A,B,C,D,E,F,G,H,I".

Now you can appreciate the advantage of having a start address at
FO0Oh. Each sprite begins 72d bytes on from the last, which corresponds
to 48h. So the LSBs of the start addresses become 0, 72, 144 and 216
(00, 48, 90 and D8 in hex). These are all less than 256, so you do not have
to alter the MSB.

Here is a demonstration program in BASIC, which will do all this: ‘ad1’
is the LSB of the address we have been talking about and ‘ad2’ is the
MSB.

68

Chapter 8 Sprites — Animation

Display Animation

shows animat

This program has been laid out in the form of a loop, controlled by ‘j’.
However, when used in an actual program — a game, or something like
that — you might want to ‘POKE adl’ with the appropriate values and
print out the sprite at four separate points of your program, so as to
distribute the printing evenly through the main loop of your game. In
that case, of course, you would drop the ‘PAUSE 5’ shown in line 240
— a game program would probably supply more than enough delay!

You can obviously print the block of characters anywhere you like
and you can easily arrange for the print position to move about under a
player’s control.

To illustrate what you can do, I have drawn out a little animated cycle
of a matchstick man running (Figure 8.1). I have done it on squared
paper, where each square in the graph corresponds to eight bytes, or
one character (see next chapter).

Note that the man’s body moves forward four pixels (quarter print
position) each frame — this means that at the end of the cycle he is
ready to start again with the whole sprite moved forward one print
position. Obviously, the foot on the ground stays in the same position,
but the other foot moves forward through the cycle to come down in the
corresponding position, when the sprite moves forward.

If you draw this action for yourself and incorporate it in a BASIC
program with a FOR...NEXT loop, which moves the print position one
place to the left each time round, you’ll be surprised how lifelike it turns
out to be. Don’t be put off if the drawings are not dead accurate and you

69

Machine Code Sprites and Graphics for ZX Spectrum

Figure 8.1

make some mistakes. It doesn’t seem to show when in action — the odd
wiggle often gives it an extra touch of character!

70

CHAPTER 9
The Moving Sprite

When using animation within a sprite you can generally do most of the
programming in BASIC. Using the print position as a unit of movement is
usually perfectly satisfactory (as in the running man example in the
previous chapter).

However, when it comes to moving a sprite bodily about the screen,
things are rather different. What makes a first-class moving sprite so
appealing is that it moves smoothly, one pixel at a time.

Display file layout

Using BASIC, there is no v .y that you can print to screen in other than
the normal print position. 3ut, to move a sprite, we want to be able to
print it starting on any line of pixels, and at any column of pixels. This
means that we have to abandon the Spectrum’s programmed print
instruction and shoot the bytes directly into the display file.

In itself, this is not very difficult.

I have read many descriptions of the layout of the Spectrum display
file, but I still find it hard to visualise. Here is a variation, which I have
found as helpful as any.

Think of the display as being in three immensely long lines, each of
256 characters. These will eventually form the three horizontal thirds of
the TV screen. Each of the long lines begins at a separate display file
address: 4000h, 4800h and 5600h.

Every character in the long line is made up of eight bytes — eight pixel
lines — and each of the long lines is stored in the display file, one after the
other. So a character in position 3 (as in Figure 9.1) will be formed from a
byte from address 0 + 3, with below it a byte from address 256 + 3; then
a byte from 512 + 3, and so on.

B 1 2 3 4 5¢gy

15 23 3134

3% § = 255
= = e————ii

1 pixel line

Figure 9.1: One of the Three Imaginary 255-Character Lines -

71

Machine Code Sprites and Graphics for ZX Spectrum

(You may have spotted that the address of each of these bytes takes the
form of ‘x003’, ‘x103’, ‘x203’, etc. In fact, to address all the eight bytes
which make up a character with its address in HL, we do ‘INC H’ eight
times, to get the eight addresses.)

The actual Spectrum screen is, of course, 32 characters wide. To make
the screen, each of the long character lines (eight pixels thick) is ‘cut up’
to make eight screen lines, each of 32 characters (Figure 9.2). But the
addressing of bytes on the screen remains the same as it was in the original
256-character lines.

]
—
—————+— —F—3
e
E= My @B |
32
——— 11—
____;——*
;;:‘;‘1

Figure 9.2: The Character Line is ‘Cut up’ into 8 32-Character Lines

You can see that, in normal printing, finding the address of a character
and printing each of its bytes in the right position can be done quite
neatly.

But suppose that we don’t want to start printing on a pixel line 0 — what
will happen then? If we want to place the first byte of our character on
pixel line 4, say, what do we do about the positions of the.other bytes?

The first four bytes go into place easily enough, using the system
outlined above. But then we get to the bottom of our long character line,
and we still have four bytes in hand. Where do they go? There must be
something under this print position (unless it is the very bottom of the
screen) but what can it be?

The answer is that, because of the ‘cutting up’ of the long lines, the next
print position is at the fop (pixel line 0) of the same long character line,
but 20h (32d) characters long (see Figure 9.3)! So if, for example, we
are dealing with an address in DE, we would take away 700h (to get back
to pixel line 0), decrementing D, and add 20h to E.

If we want to cross over from one long line to the next, we have to add
0800h (2048d) to the base address.

As you can imagine, writing a program to do all this — and then
augmenting it to deal with a sprite of nine characters — with loops within
loops within loops all needing to be kept track of, has the registers
PUSHing and POPping like a bowl of breakfast cereal!

But cheer up! Rescue is at hand! Sinclair Research have done all the
work and have included their elegant result in the Spectrum ROM. There

72

Chapter 9 The Moving Sprite

2 1 2 3 4 [YR 31
(
)
T =
o () —
) -
32 33 34 35 36 37-—-——-63
[) \
@ [\J
nd
{
A

Figure 9.3: Printing a Character across Two Different Character Squares

is a subroutine at 22AAh, called PIXEL _AD, which does éverything
we could ask for.

This routine is used when executing PLOT and finding POINT.- We
take the x and y coordinates of a pixel position and put them into the BC
register pair. Then we call PIXEL__AD, and back comes the address in
HL to which the byte must be loaded, so as to get it into the display file at
the correct position. Better than that, the A register contains a number
which indicates the position within that byte of the pixel we have
addressed. .

So HL contains the exact pixel line (the y coordinate) plus the x axis
print position (the ‘coarse’ x coordinate), while A contains the exact pixel
position (the ‘fine’ x coordinate).

(Before we go on to see how we can use these goodies in practice, you
may be interested to take the figures we’ve been dealing with a little
further. Each of the long character lines we started with contains 256
characters, each made up of eight bytes. As each byte contains eight
pixels, this means that each of our character lines contains 256 X 8 X 8=
16,384 pixels. As the screen is made up of three of these character lines,
this gives us 3 X 16,384 = 49,152 pixels on the Spectrum display screen,
every one of which can be individually addressed.)

Printing a vertically offset character

Let’s deal with the simplest case first. Suppose we print a single character
to the screen, using a routine which selects any pixel line (y coordinate)
we choose.

The principle is to get the coordinates of the top lefthand corner of the
character into BC, CALL PIXEL _AD and load the first byte of the
character into the address held by HL. We then move to the next byte of
the character, decrease the y coordinate by one (the y coordinates are
read from the bottom of the screen to the top) and call PIXEL _AD

73

Machine Code Sprites and Graphics for ZX Spectrum

again, before printing the next byte. And so on, through all eight bytes of
the character.

Obviously, this is a case for a control loop, to count the eight bytes, and
the neatest loop is the one operated by DINZ. This requires a control
number in B, but we already have to use BC for the pixel address. We
can’t easily store the register with a PUSH, because we really need to
exchange the registers for use at different points. So that is what we shall
do — we’ll use the alternate registers and access BC'.

Here’s the program.

Print ‘A’ at Pixel Coordinates 88,172
loiwlo

COORDINATES
%4 ADDRESS OF UDG IN
* SYST. VARS

BYTE COUNT

CALL PIXEL__AD

R

Notice that BC prime holds AC58 at the start — this is hex for 172, 88.
Also, at line FOO3h we have, once again, pointed DE to the address for
UDG in the system variables, at 5C7Bh, so that if you wanted to
re-address the graphics to another address by altering UDG, the routine
would still work. This could be useful for animation.

Here is a BASIC (very basic) program to demonstrate the routine:

Off-line Printing — demonstration
I PRINT PR R R R K KA R I K
AKX AR
28 RANDOMIZE USSR 61440
PRSI ON S5 S 1S 5053555000 R

The line of Xs gives a reference line and you can see how the graphic ‘A’
has been offset downwards.

74

Chapter 9 The Moving Sprite

Printing a horizontally offset character

The next thing to consider is how to offset the graphic character to one
side. So far, we have only accomplished an up-and-down movement. We
have to tackle this in a rather different way.

As I pointed out in Chapter 7, there is no way, on the Spectrum, that
you can directly print a character offset to the left or right, as the print
positions are laid down hard and fast.

To print a character which is laterally offset, we have to spread the
character over two print positions.

As before we shall need to use the carry — literally to carry the bits
spilled off the end of one byte, as we move it over, into the adjacent byte
of the second character.

Each rotation will move the character over one bit (one pixel) so, to
take up our chosen position, we shall need to use the number left in A
after CALL PIXEL AD (the exact pixel position) to control the
number of rotations.

Here is the coding.

Shift Character to Right by Number in A

CO-ORDS.
CALL PIXEL__AD
NO OF DISPLACEMENTS INTO “C”

CHECK FOR ZERO SHIFT

UDG “A”
UDG “B”
BYTE COUNT

ROTATE 1% CHR

ROTATE 2" CHR

75

Machine Code Sprites and Graphics for ZX Spectrum

You can see that, after supplying the start address in BC, we call
PIXEL AD at once and get the magic number from A into C. We have
lost interest in the start address for the present, so we can afford to re-use
BC for this new purpose. We are also not interested in the new address
supplied in HL, so we use HL and DE for the addresses of the first two
user-defined graphics, ‘A’ and ‘B’: the 48K Spectrum places these at
FF58h and FF60h.

The two instructions ‘AND A’ and ‘RET Z’ are safety nets.
(‘AND A’ tests to see whether A is zero: if it is, we don’t need to do any
rotation, so we jump out of the subroutine. If this test were not there, the
subroutine would cycle through 256 times!)

The inner loop, controlled by B, does the rotation for each pair of bytes
in the characters in turn. The outer loop, controlled by C, repeats this
operation the required number of times (in this case, four).

Before running the demonstration program, you should make UDG
‘B’ a blank, by POKEing 0 to all eight bytes. Then try this:

Off-column Printing — demonstration

1@ PRINT M“RXNXXXEMNNAERNKKXN RN RN
AKX H KK ARXA

28 RAENDOMIZE USR 61472

F@ PRINT AT 1.1&; /8"

48 PRINT AT =2.16,;"R B"

3R R R RO O R R R R K O K KX KX
"
F 3

You can see that UDG ‘A’ appears to have been printed in a position
midway between the Xs. In fact, it is not one, but two characters, as you
can plainly see in the third line of the printout, where there is a gap
between the two halves.

Printing a sprite

Armed with the results of these experiments, we are now ready to tackle
the case of the sliding sprite. But before we start scaling up the routines,
there is a bit of preparatory work to do on the sprite itself.

76

Chapter 9 The Moving Sprite

In the first place, we shall have to make it four bytes wide, rather than
three, even though the graphics will remain 3 X 3. This is to allow for the
extra byte to take up the slack in a horizontal move, as in the previous
routine.

Secondly, life is much easier if we rearrange the bytes of the sprite, so
that we can have all the bytes for each horizontal row side by side —
rather, in fact, as Sinclair have arranged the display file in the Spectrum!
Figure 9.4 illustrates what I mean. This shows the way in which the
graphics are arranged at the top of the RAM.

01 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3
[T mkal [T [cagwl T][J] cmre
Figure 9.4

We shall rearrange them as in Figure 9.5.

[a0[Bo] co] 0 [at]Bi1]c1] 0 [a2]B2] 2] 0 BEE 0]A4]B4[C4[0

Figure 9.5

This manoeuvre means that we can load the bytes into the display file in
one easy movement, rather than hop eight bytes for every operation.
Better still, we can do the rotate operations by running down the
complete line (like a zip fastener!).

The shuffling routine is quite simple, though there has to be a bit of a
hiccup after every eighth move, when we have completed one set of three
characters and have to move on to the next set.

You have to choose an address to which to copy this new arrangement
—another scratch-pad — and, once again, I suggest using the printer
buffer, just below the system variables. It will be free when we need it, it
is fixed and unaffected by the Microdrive, etc., it saves a bit of spare
RAM, and it leaves the UDGs unchanged.

Rearrange First Nine UDG in PR BUFF

PRINTER BUFFER
SAVE ADDRESS

VoL CLEAR PRINTER BUFFER

71

Machine Code Sprites and Graphics for ZX Spectrum

RESTORE ADDRESS
1} UDG ADDRESS
3 X GROUPS OF CHRS

8 X BYTES PER CHR
3 X CONSECUTIVE CHRS

BYTES LoopP

SELECT NEXT CHR

. CONSECUTIVE CHRS LOOP

(‘B’ IS ALREADY 0)
SELECT NEXT GROUP

GROUP LOOP.

The routine starts by clearing the printer buffer (by printing 0
throughout) — we want to have a clean scratch-pad. Then it sets up the
three loops, of three, eight and three, and executes them, incrementing
the source address and the destination address each time and adding 16d
to the source address when it has finished one set of three characters. (It
adds 16d, because it is already at position 8 — the end of the character
—so that it only needs to hop over two complete characters to get to the
start of the fourth.)

Here is a printout of the first 64 bytes in the printer buffer, after this
operation. The values of the bytes are not important but you can see
clearly how they have been arranged in groups of four, with a blank at the
end.

[) e

HANRY

Chapter 9 The Moving Sprite

P PR DR @R 98 20
gn @R @R TE TE TE 0@
4@ 40 PR 48 TC FO Q8
47 4@ @@ 44 40 40 @0
FE 4@ @R 0@ 0o Q@ 99

After these preliminaries, the next move is to rotate the bytes on our
scratch-pad, so as to shift the characters into the position we want.
Continuing with our listing, it looks like this:

Shift Sprite to the Right by Number in A

PIXEL COORDINATES
SAVE

PR _BUFF ADDRESS

SKIP IF COUNT = 0

ROTATE WHOLE PR__BUFF CHRS

REPEAT OPERATION
RESTORE COORDINATES

You will appreciate that the listing is very similar to the Shift Character to
Right listing given earlier in this chapter. If anything, it is rather simpler,
as the character bytes have been rearranged in a more accessible order.

When the entire program is run, the same section of scratch-pad will
look like this:

[Baed

2
i
&

el
a7
G -
B 23 @d @

Bd 44 fd 8

i
g}

i

T

79

Machine Code Sprites and Graphics for ZX Spectrum

om @4 44 D4 Q@
R @@ 0D R DR

Because our chosen coordinates (which were put into BC at address
F12Dh) involve a shift of four pixel positions, you will see that the same
hex numerals now appear neatly shifted into the next nibble.

The next thing to arrange is for the shifted sprite to be inserted into the
display file, so that it appears on the horizontal pixel line we have
specified.

The routine is, again, very similar to the Shift Character to Right
listing.

Print Sprite to Screen

PR BUFF CHRS

COUNT FOR 3 x 8 PIXEL LINES

PIXEL__AD
COUNT FOR SPRITE WIDTH

You may notice that I have used the IX register to hold the scratch-pad
address, rather than the obvious DE. This is because the indexing
capability is going to be needed later (see Generating Hybrid Characters
routine in Chapter 10).

In the meantime, if you set up a BASIC program like this:

Moving Sprite

Chapter 9 The Moving Sprite

3l

4+

ek

you can send your sprite sailing about the screen, like a cloud in the sky.
In fact, if you like to draw a cloud and get it into the UDG characters, as I
have described, you can do exactly that.

81

CHAPTER 10
Sprite Backgrounds

If you have been pushing your sprite about the screen, you may have
spotted the drawback to the routines as we have developed them so far. If
there is any other printing on the screen, it is obliterated by the sprite,
which always appears on a white rectangle (Figure 10.1).

S KM IHONR NI K K EH KK HH K KA KK KK
R RHUIRHHXIHEH I I NI XK K HHH K XN AKX KKK 7
KR HHHIHHH I KK HHHHKHKXH XK KKK K
LICOOOOOGERXX X XXX XOCIX RN KX KKN KKK KK K
AHHHHKIHHHHH KK HHX KKK HRE KKK AKX LK,
W KA H I I I H K HHHHHX X HAHH X KK I I AKX
K XRHNIEH N KKK EH AKX AKX KA K XK AKX K KX A
A OO KKK KK BB R XA X H UK XK XAHA X
ARXXAAKXREXAKKK pEE AXAAXKXOXXKNK
XX KKK XU XEANK S KAXKEAKKXKXXXH X
EHHAKX KK KH LK K AR AR KKK H AKX KHAKXKKH K
HKEXHAKHENKXHH KK KX XA XK HHX KKK K KA K
KR KHHH KK KKK E KK EHXHA L XKA XXX ANRXAE
KOO NN KRR N AR KX K HNHK KX XHH KN
AX KKK K HH XX XHRKKEHH I KK KR H XXX A XKEK K
HHAKXHHHX XXX HH K IHHR XXX XK XX KA KA X
N XN KR XX XN IOEX KN AKX XN K K
R K HHHIHHHAIHHHHHKHHH K H AR H AR AHH KA
KH XXX XKEHX KA KA X XXRH KKK XX KKK KH
KHXHHKHHHHHHKH R H AKX HH K HH X XA XXX K K
B R P O I L S I R e R N A

Figure 10.1

Moreover, if you move the sprite about it has a kind of hoovering
action — it simply wipes out the background in its way (Figure 10.2).

Protecting the background

It is not too difficult to restore the wiped-out background, as the sprite
moves. You store a replica of the display file containing your background
in a convenient part of the RAM and call it back each time you print the
sprite in a new position. This ‘screen dumping’ technique is another
extremely useful piece of machine code, which can be used for a number
of purposes, though it means sacrificing a sizeable piece of RAM to hold
the replica display file.

83

Machine Code Sprites and Graphics for ZX Spectrum

3K T D 330 3 B 33 I 3K € 9 3 9K I ¢ 9 3
KK M N N X K R N RN N RN
33 20 D0 0 B0 20 3003 3¢ 30 3 00 3 30 2 MM MM R N e
A AR HHHH KA KA E XK R IR KM H R RN K
B R N N
EEHXHH XXM XA XK R XH XXX XXX XK XA XN KR K
27 3% 0 300K M 0 363 0 K 3 900 3 0N XK RN I K
HX KN NN NN Y Y YV NN RN NN NN
AR LK AL KR K NN ggg MO XM MR WK KK
EXRHEMN KX NNKX NNKEXXXXNXRNH K

RN RN ICH K GHI MMM XN XM RN
R MR XK X MR MR HU MR R N KK
AR MKMW RN MM KN M KRN M KR KM K
HHME KKK XK XK IH MO N KR K %
HRRIHRR RN R M X NN RN KN K K
AR KKK KHK 30 3 3 0 3 30K I 0 S K
MR MK K O I XS M M R KW

FARKANKARNK KKK KA KRR E AR KR KA
R R TS AR e R R SO R R K S
XK A AR AR K E KT R KK AR R L KKK
AEE M A H AR TR KK R K E R KK A KK KKK

Figure 10.2

The coding could hardly be simpler: it is a straightforward LDIR
operation.

Screen Dump

Q

This stores the display file at addresses D000h to EAFFh. To call it back
on to the screen needs a little more of the same:

+ Screen Dump — restore

The dumping/restoring routines operate so fast that they are almost
instantaneous. In fact, you can use them to ‘blink’ on and off a line of text,
or a design — simply saving the background by dumping it and then
alternately printing the text and restoring the screen.

84

Chapter 10 Sprite Backgrounds

Free-floating sprites

But this still leaves the sprite on its white rectangle. Instead of having a
spaceship zooming about the screen, you have a postage stamp of a
spaceship, which is somehow less appealing.

In order to get the sprite floating free against any background, you
have to find a way of printing that background right up to the edge of
the sprite, no matter what shape your sprite is or where it is placed on
the rectangle which carries it.

It is not as difficult as it might sound. In fact, we use a technique
which is at least as old as the movie industry — and that is about 80 years
old.

Let me tell you about the first motion picture Box Office Smash. It
was made in 1903 and is called ‘The Great Train Robbery’. It runs for
eleven minutes. The story is simple: there’s this train with a lot of
bullion on it, these robbers jump into the van where it is being held,
while the train is on the move, and they rob it. The big scene comes
when you see the robbers overpower the guard and make off with the
loot, while you can see the countryside flashing by through the open
door of the van.

The point I want to make is that there was no countryside when this
was filmed — the door was filled with a blank of black cardboard. Then
the film was re-exposed from a moving train through another piece of
black cardboard, with a hole cut in it, exactly matching the blank door in
the studio set of the van. This was the invention of the matte shot!

The technique (or one much like it) is still used today on television,
where it is called ‘Chromakey’. It is much favoured on news bulletins,
where readers can appear against a background of starving children or
exploding bombs, while they are still sitting at their desks. You can
usually spot the use of it by the fact that a fuzzy line appears round the
foreground figures, as though drawn with a blue felt-tip pen.

To achieve a matte process by any technique requires four basic
elements. They are shown in Figure 10.3.

A and C are the background and the foreground. B is called the
‘positive matte’ and D is called the ‘negative matte’.

To make the composite picture, A and B are first combined, using B
to mask off (or matte out) the space for the foreground. Then C is
inserted into the blank space, using the negative matte, D, to mask the
background area (Figure 10.4).

In movies, this is done by physically combining the pieces of film in an
optical printer, but, to get the same effect on a computer, we can use the
logical instructions in the central processor to mask out bits as required,
and add others in their place.

Here is a routine to generate a ‘hybrid’ character in the user-defined
graphics. It takes the first UDG characters, ‘A’ and ‘B’, uses a matte set

85

Machine Code Sprites and Graphics for ZX Spectrum

D

Figure 10.3: Four Elements of Matte Process

Figure 10.4: Composite Picture

up in ‘C’ (actually, the same as CHR$ 133, the fifth graphics character)
and puts the finished hybrid into UDG ‘D’.

Generate Hybrid Characters
Sy

! UDG ADDRESS IN SYST. VARS.

&, {TX+18Y CHARACTER ‘C

1A] CHARACTER ‘A’

Chapter 10 Sprite Backgrounds

i CHARACTER ‘C’
CHARACTER ‘B’

, £% CHARACTER ‘D’
INCREMENT BASE
ADDRESS

1@ LET n=0

2@ FOR j=@8 TD 7: POKE USR “C'"+#
i,15: NEXT

3@ RANDOMIZE USR 53248

i@ PRINT TAES 18;"A B C D’

B B 8

Ew g A

In the BASIC program to demonstrate this, line 20 generates the matte.
The combined character shows up more plainly in the second printout,
where striped characters have been substituted for UDG ‘A’ and ‘B’.

It’s worth analysing how the routine works. D0O0Oh gets the starting
address of UDG into the IX register. D004h sets a loop control of eight,
corresponding to the eight bytes per character we have to deal with.
DO006h loads the A register with the first byte from the third character, the
matte. The next instruction makes the negative matte; CPL will invert all
the bits of the byte held in A. DOOA blots out half the bitsin UDG ‘A’ by
ANDing the two bytes. DOODh stores the result in the C register. DOOEh
collects the matte for a second time and, in D012h, uses it as a positive
matte to mask off the opposite half of UDG ‘B’, at IX + 10. D014h
combines the two halves by ORing them and DO015h loads the new byte
into UDG ‘D’. Then we move the address in IX up one byte and go back
to do the same thing seven more times.

You can see from this routine the advantage of b€ing able to use the
indexed register IX. It allows you to address the same relative positions of
all the four elements we are handling, as the program moves through the
eight bytes, and you only have to increment the base address.

We shall use the same technique in addressing the sprite and its matte.

Printing sprites on the background

Expanding the routine to deal with the block of 12 bytes means just the
minimum juggling with loops. To ensure that we always have access to a
‘clean’ background — one without sprite images already printed on it —

87

Machine Code Sprites and Graphics for ZX Spectrum

we make a copy, before running the routine, of the complete display file
at a new address in the RAM. We use this copy as the source of the
background for the composite sprite. The copying can be done with the
screen dump routine, which I have placed at F180h. This loads the display
file copy to a block of 1800h bytes, starting at D800h and ending one byte
before FOOOh.

We can always find the address in the copy file corresponding to the
sprite address in the actual display file, by adding a constant offset of
9800h to the display file address. This offset is placed in DE in the first
instruction below:

Print Sprite with Background

[49 i

OFFSET FOR D/FILE COPY

SCRATCH-PAD

CALL PIXEL__AD

GET D/FILE COPY ADDRESS
MATTE TO ‘A’

MAKE NEGATIVE MATTE
MASK BACKGROUND

MATTE TO ‘A’

MASK SPRITE

MAKE COMPOSITE

GET ORIGINAL D/FILE ADDRESS

Chapter 10 Sprite Backgrounds

You may be wondering what an offest of ‘IX + 60’ is doing in the routine
above. This is, in fact, the address of the matte. UDG characters
ABCDEFGHI form the sprite and I have allocated JKLMNOPQR for
the matte. Each group uses 60h (96d) bytes. This means two small
alterations to the earlier routines we have developed:

FIOE LD B,03 06 03 becomes LD B,06 06 06 (p.75)
and
F13C LD B,60 06 60 becomes LD B,CO 06 CO (p.77)

Both numbers are doubled.
Putting it all together, here is a test program and result (in Figure 10.5).

HIHNKH KKK HHKHH KA XX KX HHXHH KA KK KKK
XK M I K UM I X IMIIHN IR KA XKL K
MHOCEX XM R XX XXX XXX XA XA XXAKX
KREKXKHKIHXE X KA KA KKK KKHRAA XX XX KKK
KX XNXXNXNHHHK KKK KK H XXX NKNKH KX
A HHRH RN XA XK KKK X EA XK XXX AN KK KRS
XN RN NHMIH KR A I IOOOR XM X KKK
XK R OO X XX XXX XX
XUUXHHXH KU KRN R KR HLKAX KK XK AXARKKK
HHH K XA XM KA KX RHHE XM K XA XXX XA KK KKK
xxxxxxxxxxxxgwixxxxxxxxxxxxxxxxx

3326 3 30000 3¢ XN M I AR XK NN
HAM AKX AKX 200 O R R R M MO RO R
3R e 3 e e D e B R O M M R M MO K R
XXX XNRIOOOOOORH N XK X KKK XX KK A XK
HARHHRHIOOOOOMHXHXAH XX XXX AAXK XX
5 3 2 3 3 MO0 R 200X R KX HX MHIHCXARA KX
3OO RN XM XXX KRR AR KR KXEA XK X
X 000000 X XX K XA KR X XAKN
XAOOCRIOOEOOEIOORH KX XK XK KA XK A KAK X
33N OO0 XK
R B B g B e e e g e e e e

Graphic characters:
Sprite HOWomomomommn R

Hatte s = @ EBE E R mm =
i =
Figure 10.5

89

Machine Code Sprites and Graphics for ZX Spectrum

Matted Sprite — demonstration

1@ FOR j=8 TO 783: PRINT "X"“;:
NEXT i

28 RANDOMIZE USR 6l824

3@ POKE Bi1742,97: PORE Bl1743,%

4@ RANDOMIZE USR 61696

.

And, of course, your sprite need not be solid, Making the central square
of the matte a blank, gives the result in Figure 10.6.

73, 40 S 00 3 0 SR SR R R 2 R S RO X O O MO RO
"R 3 N D 0 20 D e e R R R R R R R
N SR R O 0 U N R OO R OO R N R
RN N 3 SR D 2 R O R R R A X
30 W 3 R 3 200 2 0 RO IO O R X XK M KKK KN
52 30 30 R 3 MM M IOROROMMOMH K R XA ALK KRR
KHKKKKHXXXXXXXXXKXXHKXXHSX¥§§3A%
ﬁXKEKXXXKXKKXXKXXXXKXKKKXXhﬂﬁﬁﬁﬁ
xxxxxxxxxxxxxxxxxxxxxx%%xxxxE%ﬁh
KKKXKKKKKKRHXXXXKKXKXXhRXXKKhhh&
WO O R R OO hixXXXXKXKKKKKX%%Kﬁ
RN H KX KNK ﬁkxxxxxxxxxxx3x3§%§
S DN R X O R RO O X OO R X N
30 30NN 3 2 3¢ 0 N X O OO X XX KA KRN
N M XN M M KX MR M MO K X KK X N NN ™
90 R T SR 2 K R M SOOI N A KON M A X
3000 XN MR 2O MO RO X KX XA XK R AR
xXXKKXXXXXXXXKXXXKXXXXXXXK%KXK%%
KKXKKKKKKKKKXXXXKXKKXXKKKKEXXXK%
KEXXKKKKXXXXXXKXXXXKK&KXXKﬁ%%XKE
KKKKxXXEKXEKKEXKKXKXKRKRXK&%RK%%
KxxxﬁxKEKKxKKKﬁ&KKKNXXEXﬁxNXﬁXﬁ}

W

Even this by no means exhausts the possibilities of your sprite. By
copying all the routines into two different locations and allocating
another block of RAM as a second display file copy, you can have two
sprites on the go.

If you use a copy of the display file with sprite 1 already printed on it as
the ‘clear’ background for sprite 2, sprite 2 can be made to pass in front
of sprite 1, and vice versa.

You can do a lot more with mattes. By making a matte of a section of
background (perhaps using the PaintCODE routine in Appendix A) you
could make a sprite pass behind a building, say. Of course, it makes fairly
lavish use of memory, but the display file is easily split into thirds, and you
could use and store just one particular third.

Figure 10.6

90

CHAPTER 11
The Attributes File

In the Spectrum, the display file and the attributes file are so cleverly
linked — ‘transparent’ is the computerspeak word — that you are
scarcely aware that they are separate and that they do quite different jobs
in entirely different ways. You accept that you can print in various
colours, on assorted background tints, with only the briefest directions in
the PRINT instructions.

However, even in the simplest operations it does no harm to realise
what the two files of data are up to. By separating their functions, you can
increase the range of possible operations considerably.

The attributes file is really a display file with a much coarser ‘mesh’. It
only copes with 768d bytes of information, as opposed to the 6144d bytes
in the display file dealing with a total of 49,152d pixels.

These relative figures make it clear why individual pixels cannot be
coloured separately in the Spectrum — if each pixel had to have a byte of
attributes in tandem, we should have used up 60K of RAM straight off,
before typing a line of program. (On the Spectrum, you will never be able
to have a red spider walking about on a black web.) Even the Sinclair QL,
with its lavish memory, only manages four bits per pixel for a full display.

Nonetheless, the attributes are very cleverly arranged. Looking at the
attributes as a separate file which can be manipulated independently of
the main display file, you can use it as a decision maker, controlling the
appearance (or disappearance) of print items in the main display. It
provides, for example, an excellent way of keeping track of what is
happening at various places on the the screen without letting these be
apparent to the eye — hiding things, in fact.

Here is a BASIC program to illustrate what I mean:

Position Hidden in Attributes

1

i e

o]

91

Machine Code Sprites and Graphics for ZX Spectrum

THER FRIMT

]

]
=
-
i
mn
j
=
=
i

Lines 10 to 50 set up a black line, with ‘x’ being a randomly-chosen
position along it. There is nothing to pick out ‘x’ on the visible screen —
all the positions are the same. But, unseen to us, in the attributes file for
that position there is a difference — ‘x” has the INK bits set to 5, whereas
all the rest are 7. This difference holds, even though there is nothing to
print with the INK.

Entering CONTINUE sets in motion a search for the odd byte and
prints out the number at which it is found. Entering CONTINUE for a
second time reveals the hidden position by printing out a line of ‘A’s —
since they are all white, except for the hidden one, this last alone shows up
in cyan.

This ‘hide and seek’ routine can be very useful in writing all sorts of
games. As an example, here is a program to generate a pack of cards and
deal them out on the screen — but invisibly (face down, as it were). The
section from 100 on ‘turns them over’. It reveals them on a white ground
with the pips in the appropriate colours. I leave it to you to devise a way to
shuffle the cards before dealing, and to prepare the graphics for the pips
and the court cards. You will also have to decide what to do about the two
cards for which there is no room on the display.

Deal Cards and Reveal

ETER &

BT ko

Chapter 11 The Attributes File

1

T w43

k=1: LE

FRIMNT BRPER T IHE

1
-4

CHAER Lo AT d#d+l g
LET i sd w4 g
Forls THER LET E=l: LE

T aQ®=gi 4

T gf=vE+ 2 B 0%

T admodH+ t g !
T ah=dd+ R

=0n

Notice how you can use BRIGHT (in the attributes) to give an outline to
two cards which are side by side, even though they may be of the same
colour. BRIGHT is a very useful attribute: it gives you an extra palette of
six, possibly seven, new tints (black is unaffected, of course, and the
difference to blue is negligible) depending on your TV.

The positions of the pips are held in q$, while x$ is set for one of the
suits by the variable ‘s’, which is added to the first UDG position.

Unfortunately, this book cannot be illustrated by a printout of the
complete screen — the ZX printer simply ignores all the attributes, so all
the careful work of hiding and revealing goes for nothing.

The attributes file is laid out in a perfectly straightforward way between
5800h and SBOOh. The first byte in the file stores the attributes for the top
lefthand position on the screen and thereafter it runs through them in
order, to the bottom right position, 300h (768d) bytes later (see p.164 of
the Spectrum manual).

Because the file is laid out in this simple way (as opposed to the display

93

Machine Code Sprites and Graphics for ZX Spectrum

file, of which more in the next chapter) it is very easy to plot your position
on the screen and POKE directly into the attributes file.

You can equally easily PEEK into it, to check whether a position is
occupied or not. This is one way of getting round the fact that SCREEN$
does not give a result with user graphics. If your graphics character is
given a distinctive INK or PAPER colour (or BRIGHT, or FLASH), you
can check whether it is on a certain square either by PEEKing the address
in the file, or by using ATTR, which calculates the address for you.

Finally, this sensible layout to the attributes file makes it very easy to
draw pictures directly to it. Here is a program to do this.

Draw with ATTR

THEM LET

THEM LET

In line 10, ‘x’ and ‘y’ set a start position in the centre of the screen and
print a coloured square. The ‘x > (’, ‘x < 31, etc., are a way of stopping
the printed square running off the screen. They are logical functions
which are worth 1 if they are true and 0 if they are not. So 1 will be added
to x or y, only if they fall between the set limits (as described in Chapter
8). The program will give you the full 24 screen lines to play with.

The program first sets a colour at line 30, after which you must use the
cursor keys with CAPS SHIFT to move the square about. If you hold
down a key, the repeat operates. I have not included coding for diagonal
moves, but there is a similar program in Appendix A (PaintCODE)
which illustrates how this can be done.

The result comes out like a bright and satisfying kind of finger painting
and is ideal for drawing backgrounds for print displays, or whatever.
Remember that, as you have been dealing only with the attributes,
ordinary printed characters can be compiled and displayed over the
background quite independently, although you will have to include
‘PAPER 8; INK 9’, to make sure that they don’t import their own
attributes with them.

Your impressionist masterpiece needs to be stored somehow, if it is not

94

Chapter 11 The Attributes File

to be lost as soon as you LIST your programming. You can do this with
the Spectrum’s SAVE ...SCREENS. However, it takes a terribly long
time to do the SAVEing (and to LOAD it) and you will be SAVEing all
the print display file as well, which you don’t really want in the present
case.

Itis quicker and neater to copy the whole attributes file somewhere else
in the RAM, and SAVE it as a block of data, with ‘SAVE ATTRfile
CODE xxxxx,768’. This takes a fraction of the time of SCREEN$ and
puts the copy file somewhere where it can be called up at will during your
program.

You can make the copy using a BASIC program like:

Store ATTR File at FOO0h (61440d)

A machine code program, though, is even simpler. It works in the
twinkling of an eye, rather than about 10 seconds, as does the reverse
program which will put your design back on the screen whenever you
want it.

Store Attributes File at FO00h

The two routines (using the addresses I have given) are called by ‘USR
62720’ and ‘USR 62732,

The 768d bytes used to store the attributes file do not take up a large
amount of extra RAM — especially when compared with the 6144d bytes
for the print display file. However, they do store a good deal of redundant
information for our purposes — we are only interested in the PAPER

95

Machine Code Sprites and Graphics for ZX Spectrum

colours. It is quite possible to extract the PAPER information and store
this in 288d bytes, by itself.

Colour

The method of storing these colour bits leads us into the territory of
colour reproduction in general. Photography, printing and computer
displays all follow the same principles for colour. This is not altogether
surprising, since our own colour vision depends on the presence or
absence of three primary colours, which is the principle employed in the
colour reproduction systems I've mentioned.

To deal with the general principles first. The Spectrum stores PAPER
colours in bits 3, 4 and 5 of each attributes byte (see p.116 of the
Spectrum manual). The first of these bits codes for blue, the second for
green, and the third for red. Ignoring the fact that the bits have been
shifted three positions to the left, the three primary colours are coded by
setting bit 1 for blue, bit 2 for red and bit 3 for green, giving them
positional values of 1, 2 and 4. Now look at the colours over the
numeral keys on the Spectrum. Neat, isn’t it?

The other three colours are combinations of two primary colours:
they are called ‘complementary colours’ and are known as cyan (from
the name of the dye originally used to produce it in photography),
magenta and yellow. White is a combination of all three. These check
out on the keyboard, too.

The complementary colours are also known as ‘minus’ colours,
because magenta is ‘(white) minus green’, yellow is ‘minus blue’ and
cyan is ‘minus red’.

You may be wondering what all this has to do with the Spectrum but
all will shortly be revealed in a blinding flash, because if we peel off all
the ATTR bits at position 3 and store them, we have, in fact, stored the
blue image. The bits at position 4 will store the green image; and the bits
at position 5 will store the red image. The complementary colours will
be stored in the appropriate pairs of blocks and white in all three.

To restore the bits to the screen in the correct colours, we can either
add the primaries on a black screen (in computer terms, set the primary
bits in a blank byte), or we can subtract the complementary colours from
a white screen, which means we reset the complementary pairs of bits in
a byte where the bits are all initially set.

All these exercises can be done using the logical functions of the Z80
chip. Some programs to carry them out follow. Most of the hard work
lies in getting the bits and bytes into the right order and the right
position.

The first routine is a little more complicated than it need be, because I
have arranged for the ‘PAPER colour’ bits, which we collect and store,

96

Chapter 11 ~ The Autributes File

to be arranged as ‘characters’ so that they can be printed out as UDGs.
This shows the complete screen compressed into a block of 4 x 3
characters.

The actual testing is done by checking whether bit 3 (the blue bit) of
each ATTR byte is set. Ifit is, we set a bit in the A register and eventually
transfer the completed byte in A to a storage position. Meanwhile, we
have shifted the whole ATTR file one bit to the right, so that bit 4
becomes bit 3. When we perform the operation again, the red bits will
have been stored. At the end of the second round, ATTR will have been
shifted again, so that the green bit becomes bit 3.

We restore the whole attributes file at the end of the routine.

3-colour Separations of ATTR

START OF STORAGE ADDRESS

COUNT FOR 3 PASSES = BLUE,
RED, GREEN

START OF ATTR

VERTICAL — 3 PRINT POS.

VERTICAL — 8 LINES PER PRINT
POS.

HORIZONTAL — 4 PRINT POS.

HORIZONTAL — 8 BITS PER
PRINT POS.

TEST BIT 3 ATTR

JUMP IF NOT SET

SET CARRY IF BIT 3 SET
GET CARRY INTO A

SHIFT ATTR TO GET BIT 4 INTO
BIT 3 POS.

TRANSFER A TO STORAGE BYTE

|

MOVE STORAGE ADDRESS
8 BYTES = NEXT UDG

REPEAT OPERATION FOR
4UDG

ADDRESS NEXT BYTE OF
UDG CHRS

97

Machine Code Sprites and Graphics for ZX Spectrum

REPEAT ALL OPS FOR 8
BYTES PER CHR

MOVE STORAGE ADDRESS
TO NEXT GROUP OF 4 CHRS

REPEAT ALL OPS 3 TIMES
FOR 3 GROUPS OF 4

REPEAT WHOLE 3 TIMES
FOR BLUE, RED, GREEN

RESTORE SHIFTED ATTR
FILE TO ORIGINAL STATE

The three blocks of characters should now be stored in the RAM, starting
at F100h (61696d) for the blue, F160h (61792d) for the red and F1COh
(61888d) for the green. The routine is placed at FOO0h, which is 61440d.

Here is a BASIC program to execute the machine code routine and
then display the three miniature ‘colour separation’ images. To print out
these images, the program POKEs the requisite addresses into the system
variable UDG, at 5C7Bh and 5C7Ch (23675d and 23676d). Tack it on
to the BASIC ‘Draw with ATTR’ program.

Generate and Print out Colour Separation Images

BEM
PORE
PEINT

@ PORE

Chapter 11 The Attributes File

TER BRINT ThHE S

1 EEEE O HEER

The printout in Figure 11.1, with letters for the colours, shows how the
separations take shape. Each miniature pattern depicts a minus colour.
The border, being black, shows up in each of them. If you could make
transparencies of these miniatures and view them, one on top of the
other, you would get full colour reproduction of the original pattern.

)
iy
]
iy
s
7]
]
]

Y Y S Y

DCIRETRNG

DImmmmmnmomms

MMPMMMEMMMAM MM A

Figure 11.1

In the meantime, let’s write a routine to put the attributes together
again. Here it is.

Reconstitute in ATTR

ADDRESS FOR ‘RED’ IMAGE
ATTR FILE

1

2

CONTROL LOOPS

3

4
‘BLUE’ STORAGE ADDRESS

CANCEL ‘BLUE’ BIT =
YELLOW IMAGE

99

Machine Code Sprites and Graphics for ZX Spectrum

‘RED’ STORAGE ADDRESS

CANCEL ‘RED’ BIT = CYAN
IMAGE
‘GREEN’ STORAGE ADDRESS

CANCEL ‘GREEN’ BIT =
MAGENTA IMAGE

LOOP 4

As you can see, this routine relies heavily on the indexed register IX. This
allows us to access the stored colour information in the same way right
through. The offsets between equivalent positions in the three colour
images always remain the same.

The base address for IX points to the ‘green’ store. This is the middle
one of the three. I have done this because the register can only index
forward 128 bytes. Since each colour store contains 96 bytes, it would
not be possible to index forward to the third colour from the first.
However, you can index backwards by 127 bytes as well, so by choosing
the middle position you can reach all three store addresses.

Before we finally leave the attributes, I'd like to point out that the
techniques we have been talking about could be a very handy method of
producing miniature drawings for sprites. Many people find it easier to do
the drawings on a full-sized TV screen and then scale them down to sprite
size. You could even try and use the colour separations to produce a cycle
of three drawings for animation. But I suspect that, by the time you had
worked out the colour relationships, you might just as well have designed
each one from scratch.

However, if you wanted to try, here is a BASIC program to change the
colours of an attributes painting on the screen:

100

Turn Designs Red or Green

REM Turn i

Fioe

Chapter 11 The Attributes File

101

CHAPTER 12
The Display File

While the attributes file is of interest, the main print display file is far
more important in the normal use of the Spectrum. At a pinch, you could
get by without the attributes at all, but without the main display file the
computer would be virtually blind and dumb.

Before you can start manipulating the main Sinclair display file, you
have to understand how it works. Alas, as has already become clear, it is
nothing like as straightforward as the attributes file. Apart from being
very much longer, it is laid out in a notoriously unconventional way (see
Chapter 9). You need a clear head to map your way about the screen. No
wonder the Spectrum manual remarks primly, ‘It is rather curiously laid
out, so you probably won’t want to PEEK or POKE init.” Unfortunately,
you probably will....)

In dealing with sprites, we made a lot of use of the ROM routine
PIXEL AD, in order to pinpoint the screen address once we had the x
and y PLOT coordinates. But if you want, for example, to scroll the
whole screen, pixel by pixel, this routine is not really the answer.

Bearing in mind the mental model I described in Chapter 9 (with the
‘long character lines’) let’s look again at the make-up of a column of print
positions.

In printing a black column or bar down the screen, you are POKEing a
series of addresses in the display file with the value FFh (255d). If we
start at the top lefthand corner of the screen, the first address is 4000h
(16384d). Then we have to add 100h (256d) for the next seven positions,
which are the beginning of a line, in a group of long lines. After that, we
have to backtrack to position 32 on the first long line to get the next
vertical position below the last, on the screen. (Look again at Figure 9.1
in Chapter 9.)

We then go through the same operation of adding 100h eight times, as
we did before, and again find a position 20h along for the next group of
lines... up to eight times in all. Then we have to tackle the next group of
long lines, starting at the base address plus 800h (2048d)... And then the
third.

Actually, in a BASIC program, it’s not too bad:

103

Machine Code Sprites and Graphics for ZX Spectrum

POKE Vertical Bar to Screen

LET = =183S4
FIoR ==32 T 2=
FOR =@ ToO 7
R e
i
MEXT =

You can see rather clearly how the loops of 8, 8 and 3 are nested
together. The same holds true for the machine code version, although
the different sections of the counts are tested by logical ADDing, so that
itis not so easy to follow.

Print Vertical Bar

TEST FOR BOTTOM
OF LONG LINE

GET NEXT POS. ON
LONG LINE

CORRECT FOR EACH
THIRD OF SCREEN

Finding UDGs
Before we go on to what bureaucrats would probably like to call an
‘in-depth analysis of the screen situation’, the addressing method I have
just outlined does offer help in a particular area where the Spectrum
fails.

The manual tells us, on p. 101, that SCREENS$ does not recognise
UDGs. As bad luck would have it, these are exactly the characters we
are most likely to want to look for. However, we now know how to

104

Chapter 12 The Display File

follow, say, the top line of character bytes through the display file, and we
can use this to spot a UDG, if we prepare it properly.

Cast your mind back to the pack of cards we were discussing a few
pages ago. I have made some designs for the four suits, which can be
entered into the UDGs. They look quite convincing, as you can see from
Figure 12.1.

| IR L
: l! -
] & | RN =

Figure 12.1: Designs for Card Suits

If you look at the big characters in the grid, you will see that the top line
of each suit is different from each of the others, which means that when
they are in the display file the top byte at their print position will be
identifiable. Here are the values of these bytes:

Spade 08h 8d
Heart 66h 102d
Club 18h 24d

Diamond 10h 16d

You can look for them with the program below, which will put a coloured
square on the first occurrence. Incidentally, none of the Sinclair
characters use any of these combinations for their first lines — most of
them are blank, but (© is 3Ch (60d).

Locate Suit

You are more likely, however, to want to identify a suit at a position you
already know. In that case, you would use a routine like the following

105

Machine Code Sprites and Graphics for ZX Spectrum

one, which will add the correct colour to the graphic character at the
chosen position.

Check Top Line
1. REH =TOL LN g =
1@Id LET "rone =IMHT (u -
LA LET ul=y-Sxzons
1TREGE LET polE38d+7ane $2048 441 75

FEIMT IME 2 BMD (FEEK p=1f 0OR FEEK

=182 ;

The variable ‘zone’ identifies which third of the screen we are looking at.

Scrolling

There is one other operation to do with the display file which is not
difficult, and that is to scroll the file to the left or to the right. (I’m talking
of a pixel scroll rather than a full print position, which is not really a
problem, anyway.)

The reason why the pixel scroll is easy is that, as you are not changing
the line positions, it does not matter in what order you take them — you
can simply start at the top and work down to the bottom.

To do the scroll, you take each byte of the display file in turn
(addressed by HL), do a ‘rotate (HL)’ — either left or right — and move
on to the next. The only thing you have to remember is that you must start
at the end, if you are scrolling to the left and at the beginning, if you are
scrolling to the right. This is to allow the bits that drop off the end of each
character to be picked up and put in the correct position in the next
character.

Here is the simplest sort of scroll. You have to provide two loops — ie
do the scroll a line at a time — so that you have a chance to wipe out the
last carry of the line. If you don’t do this, the print will scroll back on to
the screen, turning up at some very peculiar places. Try it for yourself, by
substituting ‘00’ for ‘AF’, at FOO7h.

Scroll Screen to Left

=
o

£
r
i

!
il
il

-

T

o e e

u
1
a3

Chapter 12 The Display File

To get it 'to scroll the other way, change the first line to 21 00 40’,
change line FOO8h to ‘CB 1E’ and the next instruction from 2B’ to ‘23’.

Scrolling is not much fun unless you have something to scroll on, as well
as scroll off. This means having another display file prepared at another
address.

As an example, here’s a routine to scroll two screens round and round,
like a revolving drum. It could be useful for providing a moving
background to something.

Drum Scroll — Right to Left ¥

107

Machine Code Sprites and Graphics for ZX Spectrum

Transfer Second Display to DO00h

iR e

The main program is really just two versions of the earlier program
spliced together. The visible display file is at 4000h and the second one is
at DO0Oh. HL holds the address of the first, and DE holds the second.
(Remember, we are starting at the end, so the initial addresses are 57FFh
and E7FFh.)

There’s an interesting little operation at FO1C-F024h. At the end of
the line, we are left with a dangling carry bit. It has dropped off the last
byte and has to be tacked on to the first byte of the line, if the continuous
movement is to be preserved. To do this, we PUSH the address of the first
byte, early on (at FOOAh), because by the time we get to FO1Ch we have a
new address in HL, which we want to keep. There’s nowhere to PUSH
the new address, so we swap it with the first address, still on the top of the
stack and get whatever was in the carry into the byte at this address. Then
we swap the HL addresses once again and throw away the first one (the
address of the first byte) by POPping it into AF and get on with the job.

The arrows in the routine point to the bytes which have to be changed,
if you want to change the direction of the scroll. Here they are, tabulated:

Rt L LtoR
F000-02 11 FF E7 11 00 DO
F003-05 21 FF 57 21 00 40
FOOF 17 RLA 1f RRA
FO011 2B DEC HL 23 INC HL

108

Chapter 12 The Display File

F017 17 RLA 1F RRA
FO019 1B DEC DE 13 INC DE
FO1F 17 RLA 1F RRA

The other two short routines are for use in connection with the main one.
The first transfers whatever is on the screen to the second display file,
which we create at DO0Oh. The other is a demonstration program which
will completely scroll from one screen to the other: the operation takes
exactly 256 cycles, from B =0to B = 0.

Rearranging the file

Scrolling the screen sideways, as you can see, is a fairly painless
operation. However, if we want to scroll up and down, we are tangled
again with that nightmare of jumping from line to line. After struggling
with it for some time, I have come to the conclusion that the only sensible
course is to rewrite the entire display file at another address and to
rearrange it in a way which makes it possible to deal with. That is with line
2 coming after line 1, line 3 after line 2, and so on.

In this way, we only have two short routines to deal with all situations
— one to rearrange the data in the shape we want it and the other to
reconstitute the display file and get it back on the screen.

The routines are very much like the Print Vertical Bar routine at the
beginning of this chapter, with the added factor of dealing with a
complete line of bytes, rather than a single one. Here is the first:

Rearrange D/File at DO00-D800h

109

Machine Code Sprites and Graphics for ZX Spectrum

Writing the program to restore the display file is even less arduous: you
make a copy of the first program at a new address (I have chosen FO30h).
If you have a good assembler or editing program, you can probably do
this automatically. Then you alter just two instructions: you change
‘LD A (HL)’, at FO3Bh, into ‘LD A (DE)’ and you change ‘LD (DE)A’,
at FO3Ch, into ‘LD (HL)A’.

Restore D/File from D000—D800h

110

bigsi

Chapter 12 The Display File

Armed with these two routines, a whole range of screen manipulations
becomes possible. Up and down scrolling, pixel by pixel, becomes a
simple LDIR instruction, and you can easily scroll sections of the screen
(any section, not just thirds), or even windows.

It is equally easy, of course, to scroll from side to side — you could
quite well replace the Drum Scroll routine we discussed earlier, but then
you would have to have two spare display files on the go at the same time,
which seems rather lavish for what you are trying to do.

Here is a more exotic diagonal scroll, with a little routine to run it
continuously.

Diagonal Screen Scroll

Fieo 21 20 oo Lo

F1éZ 11 @8 oF L

FI9E @1 E@ 17 Lo

Fioa B 1F g

Flos B AaG LT

Fial BN oo F1 1= FE F13o

Fii@ o3 i)
L =T
FiisaH BT

Fi CRLL Floa

EoE A
RS St s
RET

Do not, as I did, forget to include the ‘PUSH BC’ and ‘POP BC’ to
preserve the count in the second program — to see the entire listing
disappear majestically into the righthand corner, never to be seen again!

Shrinking the screen

These are only small samples of the freedom given by our rearranged
display file. There is no problem in shrinking a screen down to quarter
size, as shown in Figure 12.2.

111

Li5%¢

Machine Code Sprites and Graphics for ZX Spectrum

Figure 12.2

The routine reproduced here is a fairly ‘coarse mesh’ one — it just
squeezes together all the righthand nibbles, using the ‘rotate left decimal’
instruction and skips every alternate line. It will only work with a fairly
bold design, such as the one T have used. But it would not be at all difficult
to pick up alternate bits from the original file, to give a better resolution,
rather as we did to generate the ‘four-bit character’ font. However, I
don’t think print would ever be legible with the letters compressed into a4
X 4 matrix.

Make Quarter-sized Screen

e

Chapter 12 The Display File

113

CHAPTER 13
Inputs and Outputs

I sometimes forget that the Spectrum is not self-contained. But if it were
not for a number of input and output devices by which it is served, the
computer would be of no practical use.

The standard input devices are the keyboard and the cassette
recorder, or Microdrive. Output devices are the television, the recorder
(or Microdrive, once again) with the beeper and the printer. Many other
I/O devices can be added, of course — joysticks, paper printers and
whatnot. But they all require special interfaces, and, in this book, I want
to look at methods of using the different devices which make up the
standard Spectrum, in ways that Sinclair Research did not intend.

I can say straight away that there is nothing much to be done with the
recorder and the television, as such (as opposed to the information we
send them). Nor is there much to be gained by tinkering with the output
to the printer, to say nothing of the danger of tying the computer in a
knot, and so I will not be dealing with these devices in this chapter.

The areas that are worth exploring are the output to the border of the
television screen, which is normally controlled by the ‘BORDER x’
command, and to the beeper.

Even in these areas, the scope is limited. You can turn the border into
an imitation of a Neapolitan icecream, if that appeals, or make the
screen ‘explode’. Or you can modify the single note BEEP, to give a
range of catcalls and whistles. To make some of these tricks more
effective, we can also change the interrupt mode.

Perhaps this should be explained first.

The interrupt mode
In normal operation, the Spectrum hardware ‘interrupts’ the work of
the Z80 microprocessor every 20 microseconds (50 times a second).
This means that the Z80 stops whatever it is doing and goes into an
interrupt routine, which has to be completed before it can get on with its
main task.

This interrupt routine is fixed in the ROM at 0038h, and consists of a
quick update on the Spectrum timer, at ‘FRAMES’, followed by a
keyboard scan, to see what keys are depressed.

115

Machine Code Sprites and Graphics for ZX Spectrum

The Z.80 microprocessor is designed to allow these interrupts, to carry
out precisely this type of regular operation. It has, in fact, three kinds (or
modes) of interrupt, known as IMO, IM1 and IM2. There is also a
‘non-maskable’, ie unstoppable, interrupt, NMI.

IMO can’t be used by the Spectrum. IM1 is the mode normally used to do
the keyboard sean, etc.: it causes a direct jump to the start of the routine at
0038h, the ‘RST 38’ instruction. The all-powerful NMI hasbeen blocked—
apparently deliberately — in the Sinclair ROM. Which leaves only IM2 to
consider.

Let’s see what IM2 does. When the Z80 has been programmed for the
IM2 mode and an interrupt occurs, the Z80 immediately concocts an
address. This address is made from alow order byte, taken from the gadget
which did the interrupting — the Sinclair ULA — and a high order byte,
taken from the contents of the I register, an esoteric register provided by
the Z80 for this purpose.

Having put together thisaddress, the Z80 then jumps toit, hoping to find
another address put there by the programmer. It then proceeds to execute
whatever routine it finds at this second address.

This sounds very complicated, but the purpose is to allow the micro-
processor to tackle a particular routine dictated by a particular peripheral.

Now, what can we do with that? When an interrupt occurs, the ULA is
not programmed to supply any particular byte, so the default byte on the
bus should be ‘FF’.

This means that the address which IM2 will concoct will be ‘xxFF’,
where ‘xx’ has to be what IM2 finds in the I register. And this is something
we can put there.

For complicated hardware reasons, the complete address should not be
placed between 4000h and 7FFFh, which — as bad luck would have it—is
the entire RAM area for the 16K Spectrum! However, 16K owners should
not despair yet.

48K owners are free to choose any xxFF address they like above 8000h
and put into it the address of the interrupt routine they have written: ie if
your interrupt routine is at FOO1h, then you could place this address at
EFFFh, in the form:

EFFF 01
F000 FO

So what you have to do is to set the interrupt mode as IM2, load I with (in
the present case) ‘EF’ and provide a suitable routine at FOO1h. The
Spectrum will then carry out this routine every time an interrupt occurs, in
the middle of whatever else you have programmed it to do.

If you want the program to continue updating the clock and scanning the
keyboard, then you should make it jump to 0038h when your ownroutine is

116

Chapter 13 Inputs and Outputs

finished. Otherwise, you do an ‘enable interrupts’ (‘FB’), followed by
RET, or RETI.

An important point to note is that you must save all the registers to be
used during the interrupt routine, including AF and the alternate
registers if used. They must all be PUSHed at the start and then POPped
again before the finish.

16K owners may be feeling a bit disheartened at the moment, but there
is a dodge which allows them to join in. It is possible to use an address in
the ROM. Of course, the ROM can’t be modified, but you can look for
two adjacent bytes which are at ‘xxFF’ and ‘xxFF+ I, and which together
hold a viable address in the spare RAM.

This search yields the following results, when looking for addresses in
the ROM greater than A00Oh, at xxFFh locations:

‘xxFF’ Addresses in ROM (48K)

511 01FF CES2
2559 09FF FE69
3071 OBFF E608
3327 0CFF CFBF
3583 ODFF CD17
4351 10FF CB10
4863 12FF - CDO01
5119 13FF G255
5631 15FF CID9
5887 16FF C970
7423 1CFF C31B
8447 20FF CD21
9215 23FF C181
10751 29FF E32A
11775 2DFF D9ES
12543 30FF EB30
12799 31FF E128
13823 35FF DF24
14335 37FF A10F
14591 38FF FFFF
14847 39FF FFFF
15103 3AFF FFFF
15359 3BFF FFFF
23551 5BFF FF00

Another list more suitable for the 16K Spectrum, goes as follows:

‘xxFF’ Addresses in ROM (16K)

1791 71DD 06FF
4095 OFFF 6D18

117

Machine Code Sprites and Graphics for ZX Spectrum

5375 14FF 6469
7935 1EFF 67CD
10495 28FF TESC
24063 SDFF 6964
24831 60FF T9A2

-

There is quite a wide choice. Almost the highest practical address for the
48K Spectrum comes at 09FFh, where there is ‘FE69h’. 16K owners could
try 28FFh, which yields “TESCh’.

I say ‘almost the highest practical address’, because 48K owners have a
final, rather jokey choice; they can use FFFFh! Oddly, although FFFFhis
the absolute end of the RAM, you don’t just fall off into space after that:
you simply go round again. So that the address after FFFFh, for practical
purposes, is 0000h. And this pair yield quite a useful address for an
interrupt routine, ‘F300h’.

FFFF 00 (you can change this)
0000 F3

There are two further notes of caution to be sounded. (After all, we are
not doing what Sir Clive intended!) First, there is nothing that says that
the byte on the input buffer has to be ‘FF’. It usually is, but if you have
some other gadgets hooked up, it may be different. It could be anything at
all. (This snag, luckily, does not arise with the Microdrive.)

Faced with this problem, you would have to provide a complete range
of bytes, 257 in all, any pair of which will give the same address. For
example, you might choose the byte ‘FE’. Paired together, this would
provide an address ‘FEFE’ at which you could put your interrupt routine.

You would have to load all the bytes from, say, FDOOh to FEOOh with
FE. Then you would have to get the byte FD into the I register, after
which it wouldn’t matter what other byte got provided for the vector
address, this would always produce FEFE.

Secondly, proceed with extreme caution when using ROM addresses
when the Interface 1 is connected. The Spectrum may refer the vector
address to the Interface 1 ROM, with hopeless results. Alas, I know of no
way round this problem except to disconnect the Interface.

We have now reached the stage when we want to be able to set the
interrupt mode and supply the byte in I. The following would be the sort
of routine, using a ROM address:

A4

R
N -
PN ¢ gt
Set Interrupt Mode2 ~ »° o’ o~
FS L. []
4 Lo T

118

5“"56

65:‘2‘;

Chapter 13 Inputs and Outputs

Iz

RET

=
Jo
Hl
il
m

T

Fom
Fam

ey

We also need a similar piece of machine code, to restore the status quo,
once we have finished using our interrupt program.

Restore Interrupt Mode 1

Fala 3IE ZF Lo M GF
Falz ED 47 LD .=
Fold ED S& ImMi

F@le Co RET

The programs we set up at the interrupt address FE69h can be anything
within reason. However, it has to be remembered that the Z80 cannot get
on with the main routine while it is attending to the interrupt routine, so
the main routine will be slowed down.

The main problem with the interrupt switch, which really limits its use,
is the fact that we are tinkering with the wrong thing. You really want to
be able to control the timing of the interrupt, as much as the interrupt
routine: there is a limit to the number of things you want to check
regularly 50 times a second. It would be much more useful to have the
interrupt under our own control, in order to exploit it fully. But this is not
possible, so we should be thankful for what we have.

The television screen
Here is a program to turn the television border into a Neapolitan

icecream.

Neapolitan Ice Border

119

Machine Code Sprites and Graphics for ZX Spectrum

The NOPs are there to cause a delay, so that the colours in the border are
evenly spaced out.

Another quite jolly variation is the following, which makes the screen
appear to explode, by switching the colours every time a new frame
appears:

Flashing Border

Probably the most useful application of the changed interrupt is to allow
you to provide a moving background, independent of other program
activity, in the course of a game (such as the Drum Scroll program
described in Chapter 12).

The Spectrum BEEP
There is one other area where some worthwhile input/output techni-
ques can be put into practice, and that is with the beeper.

In normal operation, the beeper will only produce a single note of
definite pitch and duration. Using BASIC programming and a FOR
...NEXT loop, you can get a varying succession of notes, but you can’t get
a smooth slide in pitch — the switch in and out of BASIC breaks the
continuity. However, some simple machine code programming makes
this possible.

The Spectrum does its BEEPing in a very simple way. The internal
speaker is connected to one of the output ports of the Z80 processor (see
p.118 of the manual). When the speaker bit (D4) is set, it activates the
circuit and a click is produced at the speaker. By arranging that D4
switches on and off some hundreds of times a second, the ear interprets
the clicks as a sound of definite pitch.

120

Chapter 13 Inputs and Outputs

Clearly, with this system there can be no way, without extra hardware,
of modifying the waveform and so changing the characteristics or volume
of sound. However, there is one thing we can play with and that is pitch;
we can (and do, whenever we set up new values for BEEP) alter the rate
of clicks and so change the frequency of the note.

The way in which this program controls the rate of clicks is by setting up
a count (about 100 is usually the right range) and outputting a click at the
end of the count. Even a count of 100 cycles will occupy less than 10
microseconds, so the succession of clicks will produce a note well within
the audible range.

If we arrange to vary the number in the count, increasing it or
decreasing it regularly, we get a note that changes pitch apparently
continuously, like a penny whistle.

Here is the machine code listing to do this:

Penny Whistle — up or down

OUTPUT PORT 254

There are a couple of interesting points in the listing. In the first place,
output port 254 sets the border colour, as well as driving the speaker (see
p-160 of the manual). So, in order to preserve this colour, we collect it
from the system variable BORDCR, at 5C48h, in line F006h, and then
push the bits into the positions we require in the next three instructions.
The XOR instruction at FOODh switches the speaker bit on and off, as
described in Chapter 6.

121

Machine Code Sprites and Graphics for ZX Spectrum

The DI at the start of the routine and the EI at the end are there to
prevent the routine being interrupted by the keyboard scan. If this is
allowed to occur, the interrupts superimpose their own 50 Hz hum on the
note you are producing, spoiling the quality of the sound.

The H, DE and B registers are concerned with controlling the pitch of
the note, the span of the slide and the total duration. E governs the pitch
—it is the source register from which B is repeatedly loaded, to be used in
a DINZ operation to control the interval between clicks.

By incrementing E, a note will swoop down; decrementing E will make
a note slide up.

H controls the number of cycles at a particular frequency, before the
next increment or decrement. As a result of this function, H also controls
the overall duration of the program.

D governs the number of intervals used; ie the span of the slide.

All the values can be altered experimentally and will considerably
affect the type of sound produced, as might be expected. There is no fixed
‘best fit’, although the numbers given make a stab at an average.

By POKEing F018h (61464d) alternately with 1Ch (28d) for INC E’
and 1Dh (29d) for ‘DEC E’, you can get an up-and-down swoop,
something like a wolfwhistle, or a police siren.

There is a second sound effect which relies on changing frequency,
which can therefore be produced by simple BEEPing techniques. This
routine outputs two different notes at once. (I had originally hoped, when
the program was planned, that the result would play a chord, but it
doesn’t work quite like that. Presumably, to sound a chord, you have to
superimpose two separate, complete waveforms, rather than two sets of
on/off signals at different frequencies.)

However, the program produces some interesting beat effects, ranging
from a sort of rasping twitter to quite a bell-like clang.

Double Note

COUNTER, LOOP 1

SET COUNTER

COUNTER, LOOP 2

Chapter 13 Inputs and Outputs

SET COUNTER

The program uses the same system to generate the sound as before, but
this time there are two counters — one for note 1 and the other for note
2. The routine counts down on each of them alternately, and each time
one of them reaches zero, it outputs to the speaker, after which the count
is initialised again.

The number loaded into the B register, at F006h, controls the number
of times the entire program cycles through before stopping, ie the
duration of the note. Since only the B register is used, the biggest number
it can deal with is 256d, so that the duration is limited. The actual length
of the note also depends on the pitch — it will be longer for a deep note
than it will be for a high note.

The BASIC program given below runs through a representative
selection of note pairs. They vary in effect quite a lot, but the best seem to
be when one note is nearly the same as the other, or nearly the same as
one of its harmonics.

You could use this as part of an interrupt program, but the effect is
somewhat spoiled by the fact that it must be produced in staccato bursts if
your main program is to have a chance to run as well.

Run Through Double Notes

123

CHAPTER 14

Following a Machine Code Program —
Hex/Dec

So far, we have mostly been considering routines which will end up as
subroutines in larger-scale programs. But it can be interesting to work
through a complete program in machine code and to recognise how it is
put together and made accessible to the user.

I have tried to reconstruct in this chapter the thinking that went into
making a program to convert decimal into hex and hex into decimal. I
store this along with my assembler, so as to be able to convert addresses as
required.

The program uses the Spectrum calculator to work out the hex or
decimal digits. It’s a moot point whether it is better to use the calculator to
do the simple arithmetic required, or whether this would be better written
into the program. Most simple calculations can be done using the ‘ADD”,
‘SUB’ or ‘SHIFT’ instructions to add, subtract, multiply or divide. For
instance, ‘times 10’ is achieved like this:

Number in HL

ADD HL,HL 29 X 2

PUSH HL E5 Store

ADD HL,HL 29 X 4

ADD HL,HL 29 X 8

POP BC C1 (x 2 in BC)
ADD HL,BC 09 x 10

To do the same thing using the calculator requires the following:

Number in BC
CALL STACK_BC CD 2B 2D Number on Calc. stack
RST 28 EF use Calc.

A4 stack constant, ‘10’

04 multiply

38 end Calc.

The number is now on the top of the calculator stack, ready to be printed,

125

Machine Code Sprites and Graphics for ZX Spectrum

using ‘CALL PRINT _FP (CD E3 2D), the routine which prints out
decimal numbers in full, including decimal points or ‘E’ notation as
appropriate.

The calculator routines look a little obscure, because they use the
Spectrum shorthand. Once the ‘RST 28’ instruction is reached in a
program, the-program no longer interprets the subsequent bytes as
normal Z80 instructions, but as cues to call specific ROM routines, which
do arithmetical or other tasks.

‘A4’ stacks the number 10d on the calculator stack, above the previous
entries: ‘04’ multiplies the two top entries on the stack together and leaves
the answer in place of them: ‘38’ signals the end of the calculation and a
return to normal programming. A good machine code primer will give a
complete list of these codes or ‘literals’.

The ‘Hex/Dec’ program uses the calculator to work out the values of
the numbers input, in either of the formats.

Looking at the program broadly, you can see that there will have to be
two main subroutines, one to change hex into dec, and the other to
change dec into hex. There will also have to be a master routine, which
will switch to the required subroutine on request.

This master routine does not require any calculating — it is just a
selection routine, with an input. If it gets ‘H’, it goes one way; if it gets
‘D’, it goes the other.

Let’s see what that would look like:

Hex/Dec Selection

CIY-Riin

CEY -1

We have the same ‘Wait for a key’ listing which was described in Chapter
6, under the Typewriter routine. When the key code is in the A register, it
is tested twice, once for ‘H’ (48h) and once for ‘D’ (44h). Either of these
values gives a jump to a different address. Anything else goes back to the
start.

However, left to itself, this input routine will be quite uncommunica-
tive. It will just show a blank screen. We need some kind of message to be

126

Chapter 14 Following a Machine Code Program — Hex/Dec

printed up, as a cue for action. So we add the following coding at the
beginning:

Hex/Dec Selection with Cue Message

The first two instructions set the printing for the upper screen; then we
point to a message in DE of length BC and call PR__ STRING (203Ch).

The coding for the message has to be entered at the F100h address. It is
30 bytes long (1Eh) and looks like this:

Hex/Dec Message — 1

i
i1
f

it
m
H)
i

o2 12 ®1 45 12 @m 2
EE 45 45 S8 @0 EE 2E 12
Pl 44 12 @8 22 EE 44 45
4% 49 40 41 40 @o

Printing up the ‘printable’ characters of this message gives this result:

Hex/Dec Message — 2

. H E 2 ; . " .
. B . : " . o E
(" £ i = L .

Part of the text seems legible, but a lot of it seems to be missing. The

127

Machine Code Sprites and Graphics for ZX Spectrum

‘missing’ bytes contain Spectrum character codes for items other than
letters. ‘EER’ is the code for the word ‘INPUT’, as you will see if you look
at the manual (p.183). ‘12h’ codes for FLASH’ and the following ‘01h’ is
interpreted by the PR__STRING routine as ‘FLASH 1°. The ‘12 00,
two characters later, gives ‘FLASH 0’. ‘EB’ codes for ‘FOR’, complete
with space after it.

The entire coding corresponds to the BASIC line

1@ RETHT CIMPUT U FLASH 1 e 1 FL

I—l
o T

W@t FOR OHEW U IRPLT T 2

it

It appears on the screen as,

INPUT “H” FOR HEX
INPUT “D” FOR DECIMAL

with the ‘H’ and the ‘D’ flashing.

You can try out this whole section of the program if you put RETs at
F025h and FO76h. But, remember, the routine is looking for capital ‘D’
and ‘H’. We shall have to write in something to make sure that the CAPS
LOCK is on.

From hex into dec
It’s now time to consider the two subroutines. ‘Hex into Dec’ is probably
the simpler, so let’s look at that first.

Since the top address we are going to need to deal with is limited to
FFFFh, the program will never need to use more than four hex digits. We
need to organise input in a loop with ‘x4’ loop control. Each pass of the
loop will multiply the existing total by 16d, and then add to it the value of
the hex digit just input. We shall arrange to make the initial total O so that,
after the four passes, the value of our total will be that of the four hex
digits and we can print it in decimal form using PRINT _ FP.

The first step is to get the value of the digit input. We can use the ‘Wait
for a key’ routine again and get the key code into A. Next we want to
make sure that what we have is a valid hex digit. Luckily, there is a little
ROM subroutine at 2D1Bh, which will check to see if the input is a
numeral between ‘0’ and ‘9. If the key code fails this, we have to check
whether it lies between ‘A’ and ‘F’. Only if the key code passes all these
tests will the program continue. If it is OK, we had better print the digit,
too.

128

,

Chapter 14 Following a Machine Code Program — Hex/Dec

Hex/Dec — Input Hex Digit

Now to do the multiplying and adding. We need to have the value ‘16’
ready somewhere in the calculator, to do our multiplying. We also need
to have a zero on the calculator stack at the start of operations. Both of
these preparations had better be made before we start inputting digits.

The best place for the ‘16’ is in the calculator’s memory. It can stay
there as long as wanted and be called out on to the stack, by a single
literal, each time we need to use it. You get it to the memory by stacking it
and then using the literal ‘C0’. So our opening gambit is:

Hex/Dec — Value 16d to Calculator Memory

After INPUT, we have a value in A which is either ‘0’ to ‘9’ or ‘A’to ‘F.
However, the value of key code ‘A’ is not one more than key code ‘9’ — it
is eight more. We have to do a little more adjusting, before we can be sure
that we have got the value right. So, continuing with our complete listing,
to date, this is:

Hex/Dec — Hex Input, Opening Section

129

Machine Code Sprites and Graphics for ZX Spectrum

SLE men

=nd cald

Now we had better PUSH our value in A, as we are going to do some
arithmetic which will corrupt this register. The first thing is to multiply the
existing calculator stack value by 16.

EF RST28

EO get MEM,0 on stack (this is ‘16)
04 multiply

38 end Calc.

Now we can POP AF again and stack it.

F1 POP AF
CD 26 2D CALL “STK _DIGIT” +

The last call, to 2D26h, is a modified CALL to STK _DIGIT, which
stacks the value of a valid ASCII numeral. Since our own offering may
not be a numeral (it may be ‘A’ to ‘F’) but one we know is valid, we skip

130

Chapter 14 Following a Machine Code Program — Hex/Dec

the checking procedure, between 2D22h and 2D25h, which might
otherwise reject it.
Now back to the calculator again.

EF RST 28
OF add
38 end Calc.

This adds the original value on the stack (multiplied by 16) to the new
value just input, and leaves the result as the top item on the stack.

If we arrange to do this four times, we have the value of a four-digit hex
number on the stack, which can be printed in decimal with the
PRINT _ FP routine.

So, for the grand finale, which only needs a printed input cue to
complete it:

Hex/Dec — Hex Input Complete

16D TO CALC. MEM 0

0 TO CALC. STACK

4 DIGIT COUNT

1L} WAIT FOR KEY

CHECK ‘0-9"?

CHECK ‘A’~F*?

PRINT HEX DIGIT

ADJUST VALUE IF ‘A—F’

131

Machine Code Sprites and Graphics for ZX Spectrum

RET =5

get men @

MULTIPLY STACK TOP
- multipid BY 16D

end CELC.
=iy

STACK VALUE IN A

ADD NEW VALUE TO
STACK TOP

COUNT

PRINT ‘TAB 16’ (=))

PRINT DECIMAL NUMBER

From dec to hex
The second subroutine, to go from decimal to hex, follows much the same
lines, except that we multiply the total by 10d, rather than 16d, on each
pass. Also, we have no ready-made routine for printing out hex digits, so
we shall have to write one ourselves.
Each time we extract a hex digit from the number we are working on,
we shall produce a value in A which must lie between 0-15d (0-Fh).
Simply by adding 48d (30h), we shall get the codes for the decimal
numerals. In the case of the values from 10d to 15d, we have to arrange to
add a further 7 to bring it up to the codes for ‘A’ to ‘F’. So the coding will
look like this:

Dec/Hex — Print Hex Digit

We also need to work out how we are going to extract these hex digits
from the value of the complete number entered. This turns out to be very
easy. Suppose that our value is held in a register pair (it will need to be a
pair, as the maximum value we shall be dealing with, FFFFh, needs more
than one register to hold it). The value will be in the form ‘xxxx’, where

132

Chapter 14 Following a Machine Code Program — Hex/Dec

each X’ is a hex digit. So we just need a simple program, to extract each
nibble in turn from the register pair and send it off to the printing
subroutine which we have just written.

Assuming that the value is in BC, the following would do the job:

Dec/Hex — Print Hex Digits (1)

PRINT ROUTINE

PRINT ROUTINE

PRINT ROUTINE

PRINT ROUTINE

The only possible drawback to this version is that it is not relocatable — it
relies on a subroutine CALL, which has to be at a fixed address. We
might be able to get rid of this, if we arranged a ‘X 4’ loop and shifted the
nibbles into A, rather than masking them with the AND.

Dec/Hex — Print Hex Digits (2)

—
2

133

Machine Code Sprites and Graphics for ZX Spectrum

As it turns out, the second version is shorter, as well as being relocatable,
although it does use an extra register. On the whole, it seems the better
one, so let’s adopt it.

Now for the input and value extracting.

Most of the first part of the routine is virtually a carbon copy of the
hex/dec one. You do not have to place 10h (16d) in the calculator
memory: there is a constant 0Ah (10d) permanently on call among the
other constants in the Spectrum system. Also, you no longer have to
check the digits to see that they fall between ‘A’ and ‘F’ — they can only
be ordinary numerals. So the routine, up to the print section, looks like
this:

Dec/Hex — Input Decimal, part 1

MAX. NO. OF DIGITS

CHECK ‘0—'9

PRINT DEC. DIGIT

el

HIRKIR N A

mom

m o
M

i

o

STK__DIGIT

Ha

w
B3

-

Chapter 14 Following a Machine Code Program — Hex/Dec

=0

The last CALL, to 2DA2h, is to the ROM FP__TO_ BC routine. This
puts the value of the floating point number at the top of the calculator
stack into the BC register. From here, as we have found, it is a simple

matter to print out the value in hex. Before the printout, we o<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>